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Abstract

In this paper, we propose an image segmentation technique based on augmenting the conformal (or geodesic)

active contour framework with directional information. In the isotropic case, the Euclidean metric is locally

multiplied by a scalar conformal factor based on image information such that the weighted length of curves lying

on points of interest (typically edges) is small. The conformal factor which is chosen depends only upon position

and is in this sense isotropic. While directional information has been studied previously for other segmentation

frameworks, here we show that if one desires to add directionality in the conformal active contour framework, then

one gets a well-defined minimization problem in the case that the factor defines a Finsler metric. Optimal curves

may be obtained using the calculus of variations or dynamic programming based schemes. Finally we demonstrate

the technique by extracting roads from aerial imagery, blood vessels from medical angiograms, and neural tracts

from diffusion-weighted magnetic resonance imagery.
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I. INTRODUCTION

GEODESIC active contours [1], [2] have proven to be a very useful tool for a number of

segmentation tasks. Basically, the idea is to define an active contour model based on the theory

of conformal metrics and on Euclidean curve shortening evolution. This type of curve evolution defines

the gradient direction to be that for which a curve will shrink as fast as possible relative to its Euclidean

arc-length. One multiplies the Euclidean arc-length by a conformal factor defined by the features of interest

which one wants to extract, and then one computes the corresponding gradient evolution equations. The

features which one wants to capture therefore lie at the bottom of a potential well to which the initial

contour will flow. The key point is that the conformal structure defines a Riemannian metric in the plane

for which the features of interest appear as closed geodesic curves.

In this paper, motivated by certain problems in pattern detection and medical imaging, we develop a

version of geodesic active contours in a Finsler metric [3], [4]. See our discussion in Section III below

for the formal mathematical definition. The basic idea is that we add directionality now to the active

contours which allows for the segmentation of image data in oriented domains. As alluded to above,

isotropic active contour models have been used to segment image data in isotropic domains, meaning that

the value of each voxel depends only upon its position in the domain and not upon an associated direction.

However, in oriented domains, image data depends both upon position and direction. In other words, for

each position and direction in the domain there exists a unique voxel intensity. It is here that the concept

of the Finsler metric becomes crucial. In fact, if one desires to add directionality to the geodesic active

contour framework, we show that the Finsler condition is necessary to ensure that the flow is well-posed.

Note that the Riemannian metric satisfies the Finsler conditions and is well-posed. We show that there

are some applications for which the Finsler metric outperforms the Riemannian metric, but certainly there

are others for which the Riemannian metric may be more desirable. For oriented domains, as long as the

metric satisfies the Finsler condition, the choice of a particular metric is subject to the given application.

Flows relative to anisotropic metrics have been studied in the mathematics and physics literature; see
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[5], [6] and the references therein. A very simple directional flow was proposed in some of our earlier

work; see [7].

There are many applications of image data in oriented domains. Examples include diffusion-weighted

magnetic resonance imaging in which the magnetic field is biased in several directions in order to measure

the water diffusivity of biological tissue. In this case, for each position in the tissue and for each direction

of the bias field, the corresponding image intensity provides a measure of water diffusivity at that position

and direction.

Furthermore, this technique may be used in pattern detection. Consider a small image pattern patch

which we desire to match to our image. Through translations and rotations of the patch throughout the

image, we can evaluate a measure of similarity between the patch and the image for the given patch

position and direction. Thus, this is also a problem in an oriented domain because for each position and

rotation of the patch there exists a unique measure of similarity.

Geodesic active contours in the Finsler framework provide a mechanism for the minimization of energy

functionals defined on oriented domains. We derive both the curve evolution and dynamic programming

based implementations for Finsler active contours. The latter is necessary since we will want to consider

the evolution of open curves for which the level set methodology is not appropriate. Preliminary results

for directional-dependent segmentations may be found in [8], [9].

The idea of using Finsler type metrics for various purposes is of course not original in this work.

First of all regarding curve shortening, Gage [6] has considered curvature driven flows in a Minkowski

space. General mean curvature flows relative to Finsler metrics are studied in [10]. Gurtin and Angenent

have proposed the use of anisotropic Finsler flows for problems in crystal growth in [5]. In the computer

vision literature such directionally-dependent metrics have appeared in [11]–[15]. In some nice work, the

connections of graph cuts and such metrics have been described in [13]–[15]. Geodesic active contours

and graph cut methods have been combined in [13], [14]. Further, in [14] the explicit connection between

Finsler distances and the flux methods of [12] is considered in some detail.
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This paper continues the above line of research. Here we describe Finsler flows in a completely

continuous setting valid both for both open and closed curves embedded in a Euclidean space of any

dimension. The key observation is that if one defines a conformal active contour flow for a direction-

dependent conformal factor, then in order for the flow to be well-defined, one needs the standard Finsler

convexity condition (see Section III). Without this condition, the flow will be a backwards heat equation.

Thus, this present work extends the results of [1], [2] who consider conformally Euclidean metrics which

only depend on position, and are in this sense “isotropic.” (In this paper, we will follow the standard

terminology of the mean curvature flow literature in which “isotropic” flows are defined relative to a

Riemannian metric while “anisotropic” flows are defined relative to a direction-dependent Finsler metric;

see [3].) It is important to note that while one can get “directionality” in the Riemannian framework for

image segmentation by a suitable choice of metric (ellipses have directionality), nevertheless, we believe

that the Finsler geodesic active contour approach gives a natural way of performing segmentation in

oriented domains.

We now summarize the contents of this paper. In Section II, we review the theory of energy minimizing

flows and geodesic active contours as well as dynamic programming. Section III is the key part of this

paper. Here we define the notion of a ”Finsler metric” and derive the geodesic active contour flow relative

to such a structure. In Section IV, we describe the dynamic programming based solution and the numerical

implementation of such an approach. In Section V, we show results of experiments using these techniques

on both MRI tractography and pattern detection applications. In Section VI, we draw some conclusions

and describe some future research directions. Finally, we have included two mathematical appendices. The

first justifies the use of dynamic programming in our situation in which we have a data driven anisotropic

conformal factor, and the second gives another derivation of the Finsler geodesic flow which also captures

some of its interesting properties.
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II. ENERGY MINIMIZING CURVES

Energy minimization approaches to image segmentation have been very popular; see [16]–[19] and the

references therein. These approaches allow one to define a meaningful energy for a given application

and to systematically construct contours which minimize the energy. In this section, we describe two of

the key approaches for the minimization of such energy functionals: conformal active contours (based on

gradient descent) and dynamic programming. The former works for closed curves, while the latter method

is valid for curves in which we fix seed and target regions as well.

A. Geodesic (Conformal) Active Contours

In the conformal (or geodesic) active contour model, a local cost, ψ : R2 → R+, is defined based on

image information [1], [2]. For a given curve Γ the total cost L(Γ) is defined as the integration of local

costs along the curve:

Lψ(Γ) ,
∫

Γ

ψ(Γ) ds. (1)

This energy can be interpreted as the ψ-weighted length of the curve. Minimal curves will therefore

tend to go through regions where ψ is small while at the same time constraining the total conformal

Euclidean length to be as small as possible. Convergence of this flow is studied in [1], [2]. It is important

to note that s is the arc-length parameterization and, therefore, this energy is purely geometric.

If the curve is closed or has fixed end points, a partial differential equation is obtained by calculus of

variations that continuously deforms an initial curve Γ(t = 0) in a way that optimally minimizes its total

cost L. This can be interpreted as a gradient descent on the infinite dimensional space of curves.

In the case of the functional (1), the PDE that deforms a given curve in order to minimize the energy

as fast as possible in the L2 sense is

∂Γ

∂t
= −(∇ψ ·N)N + ψΓss, (2)
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where N denotes the unit inward normal.

As is standard, this may be implemented using level set methods [17], [18].

B. Dynamic Programming

Mortensen et al. [20] have proposed the live-wire segmentation technique that also determines optimal

curves for the same kind of functional. Their framework is based on dynamic programming and is

applicable to curves with one end fixed in a given seed region S.

The underlying principle of dynamic programming is the principle of optimality verified by minimum-

cost problems such as (1) (assuming an optimal curve exists). The principle is that any subpath p of an

optimal path P is itself optimal (otherwise the P could be improved by following another subpath p′

instead of p). This leads to the definition of the value function L∗ which is the minimal cost to reach the

seed region S from any point x of the domain.

L∗(x) , min{ L(Γ),Γ(0) = x,Γ(1) ∈ S }

In problems such as (1), the value function satisfies the Eikonal equation |∇L∗(x)| = ψ(x) with

boundary condition L∗ = 0 on S. This equation can be solved numerically using the fast marching

algorithm [18], [21] or can be discretely approximated using Dijkstra’s algorithm.

From any point in the domain, an optimal curve in the sense of (1) can then be determined by gradient

descent on the scalar field L∗.

III. GEODESIC ACTIVE CONTOURS IN A FINSLER METRIC

In this section, we introduce the notion of direction-dependent active contours. This will be seen to be

essentially a version of active contours defined relative to a Finsler rather than a Riemannian metric. If

one thinks of a Riemannian metric as being defined by a continuously varying family of inner products

on the tangent bundle of a given manifold, a Finsler metric is given by a continuously varying family

of Banach space norms. The strict convexity property given below is then an expression of the fact that
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these norms must satisfy the triangle inequality. More mathematical details about Finsler flows may be

also be found in Appendix II.

For an excellent exposition of the Finsler property and comparisons to the Riemannian structure, we

refer the interested reader to [4]. Finally, we should note that versions of curve shortening relative to the

Finsler structure have been studied in [5], [6], [22], [23].

A. Evolving space curves

In this section, we set up our notation and define the notion of Finsler metric.

So consider families of evolving curves of the form Γ : [0, 1]× [0, T )→ Rn. For any curve Γ(x, t) we

denote

T =
Γx
|Γx| ,

∂

∂s
=

1

|Γx|
∂

∂x
, ds = |Γx| dx.

The curvature vector of Γ is

K = Γss =
∂2Γ

∂s2
.

We say that the curve evolves normally if

V =
∂Γ

∂t
⊥ T

holds always. For such curve evolutions one has

∂tT = ∂sV, [ ∂
∂t
, ∂
∂s

] = (K ·V) ∂
∂s
, and

∂

∂t
ds = −(K ·V) ds. (3)

For any given function

ψ : Rn × Sn−1 → R+,

we let

L(Γ) =

∫ L

0

ψ(Γ,T)ds =

∫ 1

x=0

ψ
(
Γ,

Γx
|Γx|

)|Γx| dx,
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where L is the length of Γ. The infinitesimal length function ψ is only defined on unit vectors, but one

can extend it naturally to all vectors by requiring it to be positively homogeneous of degree 1. We denote

this extension by

F (p, v) = |v|ψ(
x,

v

|v|
)

so that the anisotropic length of Γ is

L(Γ(·, t)) =

∫ 1

0

F (Γ,Γx) dx. (4)

Because of the homogeneity of F , i.e.,

F (p, tv) = tF (p, v) for all x, v ∈ Rn and t ≥ 0,

the anisotropic length is invariant under orientation preserving reparametrizations of the curve [4].

However, L(Γ) may change if one reverses the orientation of Γ.

The extended anisotropic length function F (p, v) is a never a strictly convex function of v, because it

is homogeneous of degree 1. If F (p, v)2 is strictly convex, then F defines a Finsler metric on Rn [3],

[4]. A necessary and sufficient condition for this to occur is that ∇2
θF (p, θ) be positive definite on the

subspace {v ∈ Rn : v ⊥ θ}. We compute this second derivative at the particular vector θ = (1, 0, . . . , 0)

in terms of ψ. (See [24] for a proof.)

LEMMA 1: If f : Sn−1 → R is a C2 function, and if F (v) = |v|f(v/|v|), then for any v ∈ Sn−1 and

any pair of tangent vectors X, Y ∈ TvSn−1 one has

∇2
X,Y F (v) = (X,Y )f(v) +∇2

X,Y f(v)

where ∇2f is the second covariant derivative of f : Sn−1 → R.

If v 6= 0 is not necessarily a unit vector, then one has

∇2
X,Y F (v) =

1

|v|
{
(X, Y )f(v) +∇2

X,Y f(v)
}
.

It follows that ψ defines a Finsler metric if and only if the quadratic form defined by gijψ +∇i∇jψ is

positive definite.
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B. First variation

We can now compute the first variation of our anisotropic length functional, and derive the flow for

the Finsler geodesic active contours. In this discussion, we assume that the curves are closed or that the

family of curves under consideration have fixed end-points. Assuming the curve Γ evolves normally, one

has

d

dt
L(Γ) =

d

dt

∫
ψ(Γ,T) ds

=

∫ {
V · ψp(Γ,T) + (∂tT) · ψv(Γ,T)− ψ(Γ,T)K ·V}

ds,

where ψp and ψv denote derivatives with respect to the first and second variables in ψ(p, v). The derivative

with respect to v ∈ Sn−1 is a covariant derivative. We use (3) to conclude

d

dt
L(Γ) =

∫ {
V · ψp(Γ,T) + Vs · ψv(Γ,T)− ψ(Γ,T)K ·V}

ds

=

∫ {
V · ψv(Γ,T)−V · ∂s (ψv(Γ,T))− ψ(Γ,T)K ·V}

ds

= −
∫

V · {∂s
(
ψv(Γ,T)

)
+ ψ(Γ,T)K− ψp(Γ,T)

}
ds,

so that you get steepest descent with

V =
[
∂s (ψv(Γ,Γs))− ψp(Γ,Γs)

]⊥
+ ψ(Γ,Γs)Γss. (5)

Here X⊥ denotes the component of X which is perpendicular to Γs = T.

Note that ψv(Γ, v) ∈ TvS
n−1 is a vector perpendicular to v since it is the gradient of a function on

Sn−1 at the point v ∈ Sn−1. If you expand the derivative ∂s (ψv(Γ,Γs)) you will get two terms, one of

which contains second derivatives of Γ, namely, ψvv(Γ,Γs) · Γss.

The steepest descent flow, then leads to the following quasilinear PDE

V =
[
Γs · ∇vpψ(Γ,Γs)− ψp(Γ,Γs)

]⊥
+

[
ψ(Γ,Γs) + ψvv(Γ,Γs)

]
Γss. (6)

Here ψvv(Γ,T) is the linear map on TvSn−1 defined by the second covariant derivative of ψ(Γ, v). Thus

for any pair of vectors X, Y ∈ TvSn−1 one has by definition

∇2
X,Y ψ(p, v) =

(
X,ψvv · Y

)
.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

One sees that (6) is a parabolic equation exactly when ψ defines a Finsler metric. This equation defines

our model for the Finsler geodesic active contours.

The above derivation works for closed curves. In the planar case, one may implement such a flow using

level set techniques. We, however, are also in interested direction-dependent flows for curves in which we

fix seed and target regions, and for this we will propose (in Section IV) the use of dynamic programming.

This is essential for diffusion tensor imaging in which we want to discover white matter tracts starting

from some point in the image.

Finally, in Appendix II below, we derive the first variation of the Finsler functional in terms of the

homogeneous extension F which leads to another numerical scheme.

IV. DIRECTION-DEPENDENT DYNAMIC PROGRAMMING

In this section, we show how dynamic programming can be used to determine optimal curves. The

Finsler metric condition on the anisotropic factor ψ will be assumed throughout this discussion (so that

optimal paths will indeed exist).

A. Optimal control and the principal of optimality

Consider the optimal control problem of determining a trajectory x : [0, 1]→ Rn that is optimal with

respect to the functional

J(x(·),u(·)) =

∫ 1

0

L(x(t),u(t)) dt.

We assume in the discussion below that L is homogeneous of degree 1 in the u variable. The control

u(·) is defined by:

ẋ(t) = u(t).

For any given starting point x0, define the value function as the minimum cost for reaching a seed

region S ⊂ Rn from x0:

J∗(x0) = inf
u(·),x(0)=x0,x(1)∈S

J(x(·),u(·)).
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When an optimum exists, it may be found using Bellman’s principle of optimality [25]. Basically, this

states that if x∗(·) is an optimal trajectory, then all subpaths are also optimal. This can be expressed by

the following relation:

J∗(x0) = inf
u(·),x(0)=x0,x(1)∈S

{
∫ r

0

L(x(t),u(t)) dt+ J∗(x(r)) }.

This means that if an optimal trajectory x∗(·) is found such that x∗(0) = x0 and x∗(1) ∈ S, then for any

r ∈]0, 1[ the sub-trajectories x∗|[0,r] and x∗|[r,1] are also optimal. See [25] for a detailed proof.

In our case, using xt = u and x(0) = x0, the following Hamilton-Jacobi-Bellman equation is obtained:

0 = inf
u(0)
{ L(x0,u(0)) +∇J∗(x0) · u(0) }. (7)

In general the value function may not be differentiable. In that case the differential equation (7) holds

in the sense of viscosity theory. See [26].

Under our above assumptions, this can be applied to the Finsler cost functional:

L(Γ) =

∫ L

0

ψ(Γ(s),Γs(s)) ds (8)

=

∫ 1

0

F (Γ,Γx/|Γx|)|Γx| dx =

∫ 1

0

F (Γ,Γx) dx,

where s is arclength and L is length of the curve.

The resulting Hamilton-Jacobi-Bellman equation is

0 = inf
Γx(0)

{
ψ

(
Γ(0),

Γx(0)

|Γx(0)|
)|Γx(0)|+∇L∗(Γ(0)) · Γx(0)

}
,

and finally, 



0 = inf
d̂∈Sn−1

{ ψ(p, d̂) +∇L∗(p) · d̂ },

L∗(s) = 0 for s ∈ S,
(9)

where anticipating our discussion in Section V for images, we denote the given voxel location (i.e. point

in Rn) as p and direction as d̂.
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B. Numerics

This equation can be solved numerically in a straightforward manner. Several numeric approaches may

be used, such as those given in [27]–[29]. We use the Fast Sweeping approach proposed in [29]. From

any point p0 ∈ Rn an optimal path in the sense of (8) can then be determined by following locally the

vector d̂
∗

for which the minimum is attained in (9).

Algorithm 1 Sweeping algorithm to solve the Hamilton-Jacobi-Bellman equation (9); see [28]
Require: seed region S, direction-dependent local cost ψ

1: Initialize L∗(·)← +∞, except at starting points s ∈ S where L∗(s)← 0

2: repeat

3: sweep through all voxels p, in all possible grid directions

4: d̂
′ ← arg mind∈Sn−1 fL∗,ψ(p, d̂)

5: if fL∗,ψ(p, d̂
′
) < L∗(p) then L∗(p)← fL∗,ψ(p, d̂

′
) and d̂

∗
(p)← d̂

′
end if

6: end sweep

7: until convergence of L∗

The algorithm sweeps through all points p in search of the least expensive direction. The cumulated

cost to reach p from direction d̂ is fL∗,ψ(p, d̂) , (
∑n−1

k=0 αkL∗(p+δk)+ψ(p, d̂))/(
∑n−1

k=0 αk), where the n

neighbors p+δ0, . . . ,p+δn−1 of p in direction d̂ are interpolated using the components of the vector α ,

[δ0 | . . . | δn−1]
−1d̂. Thus in three dimensions, this would be n = 3 neighbors among 26. If we take then,

for example, d̂ = (0.912, 0.228, 0.342)t, one could choose the 3 neighbors δ0 = (1, 0, 0)t, δ1 = (1, 0, 1)t,

δ2 = (1, 1, 1)t, and the corresponding weights would be α = (α0, α1, α2) = (0.228, 0.114, 0.570). One

interpretation is that the value for reaching p from direction d̂ will be influenced most by the value at

p + δ2, which is the neighbor as much in direction d̂ as the grid allows. Since in general it is not exactly

in that direction, the final result will also be interpolated using the two other most aligned neighbors

p + δ0 and p + δ1.

One sees that if the continuous direction d̂ is exactly defined by one of the neighboring voxels, i.e.,
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d̂ = δk/‖δk‖, then f = L∗(p + δk) + ψ(p, d̂)‖δk‖, which is the cost for reaching voxel p from voxel

p+δk. This same quantity would be computed in Dijkstra’s algorithm. Unlike Dijkstra’s algorithm however,

the search for the optimal direction is not restricted to discrete grid directions, and the minimization is

performed continuously over the sphere Sn−1. In our implementation, the minimization is performed over

100 directions sampled uniformly on the sphere1 and the coefficients α(d̂) are pre-computed. Mathematical

details and a convergence proof are available in [28].

Note that the number of iterations (where one iteration is defined as one set of all possible directional

sweeps) required for convergence depends upon the number of turns in the curve. Each iteration, therefore,

can flow information through one complete turn of the curve. In the Applications and Simulations of

Section V, we found all the curves in 3 iterations or less.

V. APPLICATIONS AND SIMULATIONS

Having developed the theory behind Finsler active contours, we now illustrate these via several

experiments. First, we demonstrate curve shortening with respect to certain anisotropic conformal factors

as opposed to isotropic curve shortening. Second, we provide a synthetic example which demonstrates a

particular case where Finsler active contours capture a corner in directional data. Third, these methods

are applied to a pattern detection problem, specifically to detect roads and vessels in 2D imagery. Fourth,

we show 3D results of these techniques applied to diffusion-weighted magnetic resonance imagery for

white matter brain tractography.

A. Closed curves evolving according to the Finsler flow

In this section, in order to compare the proposed direction-dependent framework to the isotropic

framework, we examine the evolution of a closed bean-shaped curve with respect to three separate

conformal factors.

1For the algorithm to initialize properly, discrete grid directions have to be present.
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Fig. 1

SYNTHETIC 2D EXAMPLE. THESE THREE DIFFERENT LOCAL COSTS DEPEND ONLY ON DIRECTION. THEY ARE REPRESENTED AS POLAR

PLOTS (FIRST ROW). THE CORRESPONDING DEFORMING SHAPES ARE PRESENTED ON THE FOLLOWING ROWS (BLACK). THE INITIAL

CURVE (GRAY DASHED) IS BEAN-SHAPED. SEE TEXT.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

In order to isolate the effect of directional information, we study local costs that do not depend on

position but only on the direction N = [n1 n2]
t (we use the unit normal instead of the unit tangent in

defining the conformal factors; for planar curves this is clearly equivalent):

1) ψ = 1;

2) ψ = max( 1√
2
|n1 + n2|, 1√

2
|n2 − n2|)3/0.75;

3) ψ = max(|n1|, |n2|)3/0.75.

The first cost is isotropic. In that case, the global cost of the curve is its Euclidean length and the

minimizing flow is the Euclidean curvature flow [30], [31]. This flow shrinks any planar shape to a

circular shaped point. This is illustrated on the first column of Figure 1. The second and third costs are

defined using direction information. In particular, the second cost favors portions of the curve that are

either horizontal or vertical. The third costs does exactly the opposite and favors portions of the curve that

are diagonal. The corresponding evolutions can be observed on the second and third columns of Figure 1.

The influence of direction information is very visible in these figures.

B. Simulated Example

Finsler active contours extend the isotropic geodesic active contours by adding directionality to the

distance functional. Therefore, in oriented domains where directionality is important, Finsler active

contours capture important directional information unavailable to isotropic geodesic active contours.

Furthermore, Finsler active contours extend Riemannian active contours by minimizing with respect

to the more general Finsler metric. It will be shown that, in some cases, minimization with respect to a

Riemannian metric will yield a smoothed version of the result obtained via the Finsler metric.

In order to analyze these properties of Finsler active contours, we have devised a synthetic simulation.

We constructed a simple 2D (64x64 pixel) image with an ’L’ shaped corner as seen in Figure 2(a).

The goal of this simulation is to find an open curve which extends from the top yellow marker to the

bottom yellow marker and which follows the ’L’ shape. We performed this simulation using the dynamic

programming numerical scheme. The yellow markers are given as known inputs to the algorithm.
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The synthetic directional data was created by randomly drawing samples from the uniform distribution

on the interval [0,0.5] for evenly spaced directions on the unit circle. Then, we added the signal by giving

directions of high diffusion slightly stronger values, as shown in Figure 2(c). This figure shows a zoomed-

in view of the directional image for 9 pixels surrounding the corner. The red arrows correspond to the

high diffusion directions (i.e. the signal), the green arrows correspond to a diffusion process contrary to

the signal flow, and the blue arrows are the randomly drawn background samples.

(a) Synthetic image (b) Results

(c) Directional image (d) Riemannian image

Fig. 2

SIMULATED 2D EXAMPLE: (A) THE SYNTHETIC BASELINE ’L’ SHAPED CORNER, (B) FINSLER RESULTS (RED), RIEMANNIAN RESULTS

(GREEN), ISOTROPIC RESULTS (BLUE), (C) A ZOOMED-IN VIEW SHOWING THE DIRECTIONAL DATA OF 9 PIXELS SURROUNDING THE

CORNER, (D) A ZOOMED-IN VIEW SHOWING THE RIEMANNIAN IMAGE OF 9 PIXELS SURROUNDING THE CORNER, CREATED BY

APPLYING THE STEJSKAL-TANNER EQUATION TO THE DIRECTIONAL DATA

Using the Finsler active contour framework, we are able to capture the ’L’ shaped corner accurately,
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as pictured in red in Figure 2(b). We will now compare this to two other methods.

First, we show that adding directional information is critical to capturing the corner. We proceed

by comparing the Finsler active contour approach to the isotropic geodesic active contour approach

implemented using the Fast Marching Method [17], [18]. At each point in the image, the strongest

diffusion value (without respect for directionality) was chosen as the scalar to be used in the isotropic

approach. Since, by construction, the strongest diffusion value at each point is the same (i.e. the magnitude

of red arrows is the same as the magnitude of green arrows), it is obvious that the optimal path for the

isotropic geodesic active contour is a straight line connecting the yellow markers, as shown by the blue

line in Figure 2(b). This example illustrates the need for directionality and the difficulties which arise

from attempting to discard the directionality via a pointwise scalar function (in this case the maximum

diffusion at each point).

Second, we compared the Finsler active contour approach to the Riemannian active contour approach.

In this simulation, we created tensors from the directional data using the Stejskal-Tanner equation, as

shown by the zoomed-in view of the corner in Figure 2(d). This figure shows a zoomed-in view of the

Riemannian image for 9 pixels surrounding the corner. The resulting Riemannian optimal path is shown

in green in Figure 2(b). This figure reveals the smoothing effect which the Riemannian metric tends to

have on the result. This is due to the directional averaging which occurs in the construction of the tensors

by imposing the elliptical diffusion profile on the data.

These simulations reveal that, for this particular case, the Finsler active contour is desirable due to

the fact that it is capable of capturing a sharp corner in an oriented domain. In other cases, the scalar

geodesic active contour or Riemannian active contour approaches may have attributes which render them

more suited to the particular task.

C. Curve Detection in Imagery

Given a sample image I for which a portion of a curve Γ∗ is given (for example, by a human expert),

imagine sliding a small rectangular window along the curve in such a way that the center of the window is
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always on the curve and the long axis of the window is aligned with the tangent to the curve. Computing

the average value of image intensities at each point inside the window as the window slides along the

curve, one obtains an average pattern of what the image looks like locally around the curve Γ∗. A location

and direction-dependent pattern detector can then be defined by translating and rotating the average pattern

and determining how well it matches the image.

This protocol was applied to a road detection task. Figure 3 shows the portion of the road that was

used to learn the pattern detector. The dimension of the window along its long axis (i.e., in the direction

of the road) was chosen to be four times the width of the road, and the dimension of the window along

its short axis (i.e., normal to the road) was chosen to be two times the width of the road. The pattern

detector was then obtained for any position and direction by translating and rotating the average window

and computing the sum of the square of the difference between the intensity of the image and that of

the average window. Curves that will be minimal for this metric will then be those for which the image

locally matches the pattern of a road.

Curves were deformed using a straightforward particle-based approach. Figures 4 show two different

initial curves converging to the same portion of the road. Figure 4 show the evolution of a self-intersecting

initial curve. Finally, Figure 5 illustrates the use of dynamic programming. Note that for very low SNR,

the dynamic programming fails.

The same experiments were performed on a medical image to track blood vessels. As before the metric

was defined by an initial manual segmentation step. Figure 6 shows the result of the curve evolution

approach. Figure 7 shows the result of the dynamic programming approach. In that case noise was

artificially added.

D. High angular diffusion MRI tractography

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) measures the diffusion of water in biological

tissue [32]. The utility of this method stems from the fact that tissue structure locally affects the Brownian
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Fig. 3

ROAD IMAGE AND MANUALLY DETERMINED CURVE USED FOR LEARNING THE PATTERN DETECTOR.

motion of water molecules and will be reflected in the DT-MRI diffusion measurements. In classical theory,

diffusion follows a Gaussian process which can be described locally by a second order tensor.

A simple and effective method for tracking nerve fibers using DT-MRI is to follow the direction of

maximum diffusion at each voxel [33]–[36]. Although this method is wide-spread and used in various

ways the fiber trajectory is based solely on local information which makes it very sensitive to noise.

Moreover the major direction of diffusion can become ill-defined for example at fiber crossings.

As an application of our framework, tractography is set in a continuous minimum cost framework. This

is different from [37], [38]. Indeed in these works, the authors do not propose variational (cost minimizing)

techniques. Local costs are defined for every direction on the unit sphere based on high angular resolution

diffusion imagery. Equivalently, this can be considered a minimum arrival time framework in which the

speed of fictitious particles would be the inverse of the cost.

1) Constructing the Direction-Dependent Cost: Most front propagation techniques for diffusion tensor

tractography use some ad hoc function f of the quadratic form d̂
t
Dd̂, where D is the diffusion tensor.

If the Gaussian assumption holds, the diffusion weighted images follow
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(a) Initial curve 1 (b) Initial curve 2 (c) Initial curve 3

(d) Evolving curve 1 (e) Evolving curve 2 (f) Evolving curve 3

(g) Steady state 1 (h) Steady state 2 (i) Steady state 3

Fig. 4

PARTICLE-BASED CURVE EVOLUTION WITH DIFFERENT INITIALIZATIONS
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(a) Recovered curve (original) (b) Recovered curve (SNR=0.50) (c) Recovered curve (SNR=0.25)

Fig. 5

RESULTS OF ROAD DETECTION ON NOISY IMAGES USING DYNAMIC PROGRAMMING.

(a) Initial curve (b) Evolving curve (c) Steady state

Fig. 6

CURVE EVOLUTION ON A REAL IMAGE. THE LOCAL COST IS DETERMINED USING A PATTERN DETECTOR.

S(p, d̂) ' S(p,0) exp(−b d̂
t
D(p)d̂). (10)

Tensor based techniques can formally be extended to high angular resolution diffusion datasets by

setting (see [8] and references therein for details):

ψ(p, d̂) , f(−1

b
log(

S(p, d̂)

S(p,0)
)). (11)

However, in the experiments below we employed the following metric:
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(a) Original image (b) Recovered curves (c) Recovered curves (SNR=0.25.)

Fig. 7

VESSEL DETECTION USING DYNAMIC PROGRAMMING. THE PROCEDURE WAS RUN INDEPENDENTLY FOR TWO SEED POINTS (LARGE

DISCS) AND SEVERAL TARGET POINTS (SMALL DISCS). ON THE RIGHT, NOISE WAS ADDED. THIS CHANGES THE RECOVERED CURVES

AS ONE OF THE BRANCHES AT THE BOTTOM IS NO LONGER VISIBLE.

ψ(p, d̂) ,
(

S(p, d̂)∫
v̂⊥d̂

S(p,v̂)
S(p,0)

dv̂

)3

. (12)

This quantity will be small if there is diffusion in direction d̂ (numerator small) and limited diffusion

in directions normal to d̂ (denominator large). The main advantage of this formulation is that several

data points are used to compute the denominator which improves the signal to noise ratio. We chose

f(x) = x3 experimentally to accentuate the anisotropy of the data. Because experimentally only a few

dozen directions are used for acquisition, interpolation was also performed.

It is very important to note that the anisotropic conformal factor ψ is constructed from the data, and

for example in the DW-MRI case we have no proof that the corresponding F 2 is always strictly convex.

However, in Appendix I below we include for completeness a standard argument which shows that using

a scheme such as fast-sweeping, one computes the optimum relative to the convexification of F 2. This

type of convexification argument is well-known in the optimal control literature (see the classical text [39]

for details). Thus we are computing in fact geodesic active contours relative to the Finsler metric defined

by the convexification of the defining function.
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(a) b = 500 (b) b = 1000 (c) b = 1500

Fig. 8

COST PER UNIT LENGTH OF END POINTS OF OPTIMAL CURVES FOR DIFFERENT B-VALUES IS A VALIDITY INDEX. BEST RESULTS ARE

ACHIEVED FOR THE HIGHEST b-VALUE.

(a) (b)

Fig. 9

FIBER TRACKING FROM HIGH ANGULAR RESOLUTION DATASET (B=1500 s/mm2).

2) Results: Here we show results obtained by applying the methodology described in the above sections

to diffusion weighted data sets acquired using a single-shot diffusion-weighted EPI sequence, with 31

different gradient directions with b-values (see equation (10)) of 500, 1000, and 1500s/mm2, on a 1.5

Tesla GE Echospeed system. The data was acquired with different b-values to enable comparisons of the

results. Traditional eigenvector based tractography is normally carried out in data with b-values in the

range of 700 − 1000s/mm2. Higher b-values give data with higher angular contrast, but at the expense

of more noise.
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Fig. 10

PROPOSED TECHNIQUE ON HIGH ANGULAR RESOLUTION DATA (BLUE) COMPARED WITH STREAMLINE TECHNIQUE ON TENSOR FIELD

(RED) (B=1500 s/mm2).

Cost per unit length, which can be interpreted as a validity index for the putative tracts was determined

for all b-values as shown in Figure 8.

All curves are optimal given their starting point. The cost per unit length is a measure of the

likelihood that a tract from the seed region passes through a given point in the domain. The best contrast

(corresponding to the most coherent set of “super-optimal” tracts for a given seed point posterior of the

corpus callosum) was obtained at the highest b-value available. This could indicate that the algorithm was

was able to take advantage of the higher angular contrast in spite of the lower SNR. Tract results for

several user defined seed points are presented in Figure 9.

Finally, the proposed technique was compared to a streamline technique (see [33]–[36]) which requires

the computed tensor field as shown in Figure 10.

While validation is a very challenging task due to the lack of ground truth, it can be noted that both

algorithms give similar results even though their inputs are different. The tracts of the proposed technique

tend to be more coherent as any noise in the data might set the streamline off course whereas the proposed

technique is more global.
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E. A Note on Timings

Here we present a note on the timings for each of the experiments. All of the experiments were

performed on a common PC. We used a Dell Optiplex GX270 with an Intel Pentium 4 single core

chip and 2GB of memory. Each of the experiments above was conducted using Matlab code with C

mex functions for the Fast Sweeping implementation. And, while this code was sufficiently fast for our

purposes, we are in the process of porting the code to the freely available Insight Toolkit (ITK) [40].

All of the particle based approaches, on 2D roads and vessels, converged quickly and in negligible

time. Also, all of the Fast Sweeping approaches converged in 3 iterations or less (where one iteration

consists of all of the possible directional sweeps through the image), see IV-B for more discussion on Fast

Sweeping convergence. For example, it took 0.13 seconds for the experiment in Section V-B to converge

on a 64x64 grid, and it took 20 seconds for the experiment in Section V-C to converge on a 787x787

grid. Also, with simple masking of irrelevant voxels, the time to converge for the 3D DWMRI experiment

in Section V-D was under 5 minutes. The time to compute a path from a target point back to the seed

point is negligible compared to the time required to run the Fast Sweeping portion of the algorithm.

VI. CONCLUSIONS

In this paper, we proposed a natural approach for adding directionality to the conformal active contour

technique. The cost of a curve is defined as the length of the curve weighted by some position and

direction-dependent local costs based on image information. This allows for the asymmetric processing of

information based on direction. The local costs can be defined from a direction-dependent pattern detector,

which can be obtained after a learning step.

The techniques described in the paper are very general and could be used to extract information from

many different types of imagery. They have been applied mostly to medical imaging datasets and, in

particular, to images of the brain. In fact, it was the problem of extracting white matter tracts that initially

motivated this line of research. In the medical area, it could be also be applied to the extraction of blood

vessels from various imaging modalities such as magnetic resonance or computed tomography.
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Finally, we have only described the Finsler framework in the case of curves. One can derive and study

a similar flow for surfaces. This will be the topic of our future research in studying directional-based

segmentation methods.

APPENDIX I: FINSLER COMPUTATION FOR NON-CONVEX FUNCTIONS

As we noted above, there may be problems in the non-convex case for our directional segmentation

scheme. Nevertheless as we will indicate in this appendix the fast-sweeping type numerical approach will

automatically capture an approximation for the convexification of the functional (in the sense to be made

precise below.) We abstract the situation to be studied as follows.

Let ψ : Sn−1 → R be a function and suppose one defines the cost of a curve Γ to be

C(Γ) =

∫

Γ

ψ(T) ds.

Define F : Rn → R to be the homogeneous extension of degree one of ψ, so

F (v) = |v| ψ( v
|v|

)
.

This function need not be convex. We define its convex hull to be

F̃ (v) = sup
{
a · v + b : a ∈ Rn, b ∈ R,∀x a · x+ b ≤ F (x)

}
. (13)

Furthermore we define

E =
{
v ∈ Rn : F (v) = F̃ (v)

}
.

This is the set of extreme points.

The cost C(Γ) of any parameterized curve Γ : [0, 1]→ Rn is given by

C(Γ) =

∫ 1

0

F (Γ′(ξ)) dξ (14)

One can also define the relaxed cost as

C̃(Γ) =

∫ 1

0

F̃ (Γ′(ξ)) dξ. (15)
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Clearly one always has

C̃(Γ) ≤ C(Γ) (16)

since F̃ (v) ≤ F (v) for all v ∈ Rn.

For any given set Σ ⊂ Rn and point p ∈ Rn \ Σ one defines the cost to get to Σ from p as

C∗(p) = inf
{
C(Γ) : Γ(0) = p,Γ(1) ∈ Σ

}
(17)

Here the infimum is taken over all curves from p to some point in Σ.

One can also define

C̃∗(p) = inf
{
C̃(Γ) : Γ(0) = p,Γ(1) ∈ Σ

}
, (18)

where the infimum is again taken over all curves from p to some point in Σ.

LEMMA 2: For any curve Γ : [0, 1] → Rn and any ε > 0 there exists a piecewise linear curve

Γ̃ : [0, 1]→ Rn with the same endpoints for which one has

C(Γ̃) = C̃(Γ̃) ≤ C̃(Γ) + ε.

This lemma says that any curve from p to Σ can be replaced by a curve with the same endpoints whose

velocities are extreme points for F (i.e. F̃ (Γ′(ξ)) = F (Γ′(ξ)) for all ξ), without increasing the cost by

more than ε.

An immediate consequence of the lemma is:

LEMMA 3: C̃∗(p) = C∗(p).

It follows that any (correct) method which computes C∗ by propagating the front ∂Σ outwards with

velocities given by F will actually compute C̃∗.

Proof: [Proof of Lemma 2] First, it is clear that one can approximate the given curve Γ by a piecewise

linear (PL) curve Γ1 for which F̃ (Γ′1(ξ)) ≤ F̃ (Γ′(ξ)) + ε holds for 0 ≤ ξ ≤ 1. Thus C̃(Γ1) ≤ C̃(Γ) + ε.

Next, the PL curve Γ1 is linear (i.e. Γ′1(ξ) is constant) on each interval (ξi−1, ξi) from some partition

0 = ξ0 < ξ1 < · · · < ξn = 1. Let vi be the constant value of Γ′1 on (ξi−1, ξi). If vi 6∈ E (recall that E is
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the set of extreme points), then vi is a convex combination of certain ṽ1
i , . . . , ṽni ∈ E, i.e.,

vi = α1ṽ
1
i + · · ·+ αnṽ

n
i , αi ≥ 0,

∑
αi = 1, (19)

while

F̃ (vi) = α1F̃ (v1
i ) + · · ·+ αnF̃ (vni ). (20)

Now define a PL curve Γ2 which has

Γ′2(ξ) = vki for ξ ∈ (
ξj−1
i , ξji

)
(21)

where ξji = ξi−1+αj(ξi−ξi−1). Thus we replace the segments of Γ1 whose velocity are not in the extreme

set E of the function by PL zigzag curves with the same begin and end points whose velocities are in E.

With this definition one has

Γ2(ξi)− Γ2(ξi−1) = Γ1(ξi)− Γ1(ξi−1)

Hence, if one sets Γ2(0) = Γ1(0) = p, then one ends up with Γ2(1) = Γ1(1) ∈ Σ.

Using (20) one can easily see that C̃(Γ2) = C̃(Γ1). Since Γ′2(ξ) ∈ E for all ξ one also has C(Γ2) =

C̃(Γ2). Hence Γ2 is a curve from p to Σ with C(Γ2) ≤ C̃(Γ) + ε.

APPENDIX II: FINSLER FLOW IN TERMS OF F

In this section, we describe the Finsler flow in terms of the homogeneous extension F and derive some

of it properties.

A. First variation using F

Instead of writing L(Γ) in terms of ψ, we can also write L(Γ) as in (4). The first variation is then

given by the usual Euler-Lagrange equation

d

dt
L(Γ) =

∫ 1

0

{
Fp − (Fv)x

} · Γt dx. (22)

If one looks for a normal evolution equation (i.e. Γt ⊥ Γx) then one is led to an equation of the form

β Γt =
{
(Fv)x − Fp

}⊥
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for some positive scalar β. If one additionally wants the equation to be invariant under reparametrization,

then the only possible choice for β is β = G(Γ,Γx) in which G(p, v) is positively homogeneous of degree

one in v ∈ Rn. A possible choice would be G(Γ,Γx) = |Γx|, which leads us to the evolution equation

Γt =
1

|Γx|
{
(Fv)x − Fp

}⊥
. (23)

This equation is equivalent with (5).

One could also choose G(p, v) = F (p, v) which would result in

Γt =
1

F (Γ,Γx)

{
(Fv)x − Fp

}⊥
.

B. Some identities involving F

Since F (p, tv) = tF (p, v) for all t ≥ 0 one has

Fv(p, tv) = Fv(p, v) (∀t > 0) (24)

Fv(p, v) · v = 0 (25)

For the second derivative Fvv(p, v), which we regard as a symmetric linear transformation on Rn, this

implies that

Fvv(p, v) · v = 0, (26)

and hence,

Fvv(p, v) · w ⊥ v (∀w ∈ Rn). (27)

We may also regard Fvp(p, v) as a linear transformation on Rn, and in this case we have

{
v · Fpv(p, v)− Fp(p, v)

} ⊥ v. (28)

Indeed, in tensor notation this amounts to

viFpivj
(p, v)vj = Fpi

(p, v)vi

which one obtains by differentiating the Euler identity

Fvi
(p, v)vi = F (p, v)

with respect to p in the direction of v.
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C. Steepest descent with F

We continue with equation (23)

|Γx|Γt =
{
Fvv(Γ,Γx)Γxx + Γx · Fpv(Γ,Γx)− Fp(Γ,Γx)

}⊥
.

By (27) the combined terms on the right are already perpendicular to Γx. We therefore find that (23) is

equivalent with

Γt =
1

|Γx|
{
Fvv(Γ,Γx) · Γxx + Γx · Fpv(Γ,Γx)− Fp(Γ,Γx)

}
(29)

More generally, one gets the equation

Γt =
1

G(Γ,Γx)

{
Fvv(Γ,Γx) · Γxx + Γx · Fpv(Γ,Γx)− Fp(Γ,Γx)

}
(30)

No matter which G one chooses, this equation fails to be parabolic since Fvv always has a zero

eigenvalue, namely Fvv(p, v)v = 0.

D. Parabolic equation

The right hand side in (30) is invariant under reparametrizations, i.e. if Γ(x, t) = γ(y(x, t), t), then γ

satisfies

γt =
1

G(γ, γy)
Fvv(γ, γy)γyy + ytγy.

Choose the parametrization so that

yt(x, t) =
[
α[γ](γy · γyy)γy

]
y=y(x,t)

for some scalar α > 0 which can depend on Γ and Γy.

The resulting equation for γ is then

γt =
{Fvv(γ, γy)
G(γ, γy)

+ αγy ⊗ γy
} · γyy +

B(γ, γy)

G(γ, γy)
(31)

where by definition

B(p, v) = v · Fpv(p, v)− Fp(p, v).
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As long as one chooses α(γ, γy) > 0, and as long as Fvv is positive definite on {v}⊥, this equation is

strictly parabolic. A particular choice for G and α would be

G = |γy|, α = |γy|−2,

which leads to

Γt =
{
Fvv(γ,T) + T⊗T

} · γyy|γy|2 +B(γ,T) (32)

where T = γy/|γy| is the unit tangent vector.

E. Numerical scheme

We should note that using the above a simple approach can be employed to equation (32). For

completeness, we sketch this here.

We set

γ(j∆x, k∆t) = γkj ,

and discretize (32) as follows

γk+1
j − γkj

∆t
= Akj

{
γk+1
j+1 − 2γk+1

j + γk+1
j−1

}
+Bk

j (33)

in which the n× n matrices Akj are defined by

Akj = 4
Fvv(γ

k
j ,T

k
j ) + Tk

j ⊗Tk
j

|γkj+1 − γkj−1|2

and one could define the unit tangents Tk
j by

Tk
j =

γkj+1 − γkj−1

|γkj+1 − γkj−1|
.

The vectors Bk
j could be discretized by

Bk
j = Tk

j · Fpv(γkj ,Tk
j )− Fp(γkj ,Tk

j ).

The system of equations (33) is tridiagonal vector valued system of equations. If one puts the components

of each vector γkj in one long vector, then (33) can be written as a finite band system of equations, which

can be solved very efficiently (O(n) operations per time step).
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