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ABSTRACT

In this paper we will develop a method to determine
cross sections of arbitrary two-dimensional tubular struc-
tures, which are allowed to branch, by means of a Stokes
flow based boundary integral formulation. The measure for
the cross sections for a point on the boundary of a given
structure will be the path obtained by integrating perpen-
dicularly to the flow lines from one side of the boundary to
the other. Special emphasis will be put on the behavior at
branching points, the behavior at vortices, and the necessary
boundary conditions. The method can be extended to three
dimensional problems.

1. INTRODUCTION

Measuring cross sections of structures in a consistent,
meaningful way is important for many applications. In
medical imaging, anatomical structures often times exhibit
complicated, convoluted shapes. Manual thickness mea-
surements based on image data (especially in three dimen-
sions) then easily become error-prone. Jones et al. [1] use
Laplace’s equation to measure cortical thickness in three-
dimensional images whose variations can be associated
with many pathologies: e.g. Alzheimer’s disease. Yezzi
and Prince [2] improve the speed of Jones’ computational
method and eliminate the need for the explicit computation
of trajectories. However, as in [1], the approach is confined
to structures that can be described by two simply connected
boundaries. Budding structures (see Section 5) pose se-
rious problems for the aforementioned approaches. Note
that, since the temperature at the two boundaries is fixed,
no sensible thickness would be assigned to the cavity of the
budding structure by a Laplace equation based method: a
solution of Laplace’s equation will not exhibit vortices.
This paper will deal with structures that cannot be de-
scribed by two simply connected boundaries, e.g. struc-
tures that branch (e.g. blood vessels), and/or exhibit bud-
ding/constriction of boundary part(s). Instead of defining
thickness by means of the solution of Laplace’s equation
we use the Stokes equation (describing fluid flow at low
Reynolds numbers), with free slip boundary conditions. We
assume that the object to be measured is given as a digital
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image. To solve the Stokes equation we use a boundary in-
tegral formulation, thus reducing the dimensionality of the
problem by one dimension. There is no need to discretize
the interior of the object. We restrict ourselves to the two di-
mensional problem (flow in a plane). However, the method-
ology developed can be extended to three dimensions (the
boundary integral formulation for the Stokes equation is
standard in three dimensions). Other fluid flow equations
have recently been used in computer graphics and image
processing, notably for image inpainting/reconstruction [3].
Examples for using the boundary element approach in com-
puter vision can be found in [4].

Section 2 introduces the Stokes equations and
presents the boundary integral formulation as given
by Pozrikidis [5]. Section 3 deals with the discretization
of the boundary integral equations, and introduces the
formalism for solving the discretized equations. Section 4
describes the methodology for measuring cross sections
once a flow field has been obtained. Examples are given
in Section 5. The paper ends with a conclusion and
suggestions for future work in Section 6.

2. BOUNDARY INTEGRAL FORMULATION OF
THE STOKES EQUATIONS

Pozrikidis [5] gives a good introduction to the boundary
integral method for linearized viscous flow. Higdon [6]
treats two-dimensional Stokes flow problems for arbitrarily
shaped domains. Zeb et al. [7] present an implementation of
Higdon’s approach and extend it to handle pressure bound-
ary conditions. This section aims at reviewing the basics
for the formulation of the Stokes flow problem in terms of
boundary integrals, following [5, 7].

2.1. The Stokes flow equations

Incompressible fluid flow problems where viscous forces
dominate can be described by the divergence-free condition
and the Stokes equation

V-u=0, —VP+uVu+pb=0. 1)

Here w is the fluid velocity, 1 the viscosity of the fluid, P is
the pressure and b is the body force. V indicates the gra-
dient, V- represents the divergence operator, and V2 the



Laplacian. In the sequel we incorporate the body force in
the modified pressure PMOP = P — pb - 2. To avoid un-
necessary heavy notation P is understood to mean PMOP
in what follows.

2.2. Boundary integral formulation
The incompressible solution of the Stokes equation
~VP+ uV3u + gd (x — o) = 0,

where §(x — x) is a two-dimensional Dirac-delta-function
centered at x( and g is an arbitrary vector-valued constant,
is given by*
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(2) is the solution for the Stokes flow caused by a two-
dimensional point force at xo. G;; are the Green’s func-
tions, which describe the influence of a force at position x
on the solution at position x. Since the Stokes flow prob-
lem is linear, one can express the solution to an arbitrary
force distribution by superposition of the respective Green’s
function solutions for each point force.
The stress associated with this flow may be written

1
oij(x) = ETz‘jk(w,wo)gk,

Gij (iL’,iEo)gj. (2)

where the stress tensor Ty, is
Tiji(x, o) =
G OGy;
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The Green’s functions G;; (also called the two-dimensional
Stokeslets) and the stress tensor 15, are given by [5]

(z,x).
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Here 0. is the Kronecker-delta-function, » = || — x¢||2,
and & = © — xg.

For a point xq inside or on the boundary the solution to
the Stokes equation (1) in terms of boundary integral equa-
tions is

(o) u; (o) = —ﬁ | @Gy m) dife) +
4i wi (@) Tign (@, zo)ni(a) di(@),  (3)
T JoD

for the velocities, where f;(x) = o;;(x)n;(x) is the stress
force, and n(z) is the normal vector to the boundary 0D
at position x, pointing towards the interior of the solution
domain D. n(x) accounts for the dependency of the ve-
locity integral on the location of x¢: n(xg) = 1 if &g € D,
n(xo) = 5 if xo € OD.

INote that we are looking at the two-dimensional Stokes flow problem.
This is the solution of the two-dimensional equation, written with Ein-
stein’s summation convention (summing over multiply occurring indices).
Solutions in three dimensions also exist, as treated in [5]. We denote vector
components by subscripts, i.e. w1 and uz for the components of w.

3. BOUNDARY DISCRETIZATION

Following [7] we assume a piecewise linear parameteriza-
tion of the boundary. The boundary 0D is divided into n
straight lines 0Dy, k = 1,2,...n, where f;(z) and u,(z)
are assumed constant along these elements. With these sim-
plifications, the governing boundary integral equations (3)
become

n(zo) <Z;gg%) =
1 - ne(x jjllk(wkva) f21k(wk,wo) up ()
4 ; k( k) (T12k(-’13k,$0) TQQk(mk,mO)) (UQ(:Ek)>
1 (Gu(mr,mo) Ga(mk,xo)\ (fr(mk)
7 (Gm(fﬂk,wg) G22(:B;€,wg)) (f2(wk)) )

where the two dimensional Stokeslet integrals are given by

2121

—Inr+ 2 dl

G1i(zk, o) =/

ODy,

Gra(zk, o) = / xl? dl = Gy (@, o)
oD, T

Conlonan) = [ —mr T2l ©)
Dy, r

and the stress tensor integrals by
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Trok(xk, To)nk (k) = —4%”1‘(?’01@)/ 142 dl = Toik
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dl is the differential along the boundary element. Equa-
tions (5, 6) can be evaluated analytically; they describe the
influence of a whole boundary segment on a point x lo-
cated in or on the boundary of the domain D. The inte-
grands of Equations (5, 6) exhibit singularities. These are
removable (except for the case of points which lie exactly
on the end point of a boundary element)?.

To evaluate the discretized boundary integrals (4) we use
the following two step approach (see [7]):

a) Evaluate the velocity boundary integrals for the n
center points of the boundary elements, by specify-
ing 2n boundary conditions. This is a linear equa-
tion system with 4n unknowns (f1, fo, u1, us for ev-
ery boundary element) and 2n equations. Fast algo-
rithms for solving such boundary integral equations
exist, e.g. [8].

b) Solve for the velocity at arbitrary positions inside the
domain D by using Equation (4).

2We omit the explicit analytical expressions for the integrals due to
space constraints.



The boundary decomposes into the inlet, outlet and wall
boundary parts: 9D = 0D;UdD,UdD,,. We prescribe the
velocity profile a1, u,2 at the inlet (0.D;) and assume stress
free boundary conditions for the outlet(s) (i.e. f; = fo =0
for x € 0D,). 0D, exhibits perfect slip without perme-
ation: we = 0, f; = 0. Note, that these boundary condi-
tions directly translate to the three-dimensional case. While
the Stokes equation itself is linear and reversible, we note
that the generated flow fields will vary slightly under inter-
changing the identification of the inlet and outlet, because
of the prescribed boundary conditions. These differences,
however, will largely be restricted to the immediate vicini-
ties of the inlet and outlet for reasonable prescribed inlet
flows.

4. MEASUREMENT OF CROSS SECTIONS

To measure cross sections of a structure we propose to inte-
grate perpendicular to the computed flow field. We compute

xz(l) = /Ol vdl, (7

where v € R? is a unit vector normal to the fluid speed  at
all points, (L) € 9D with L # 0, and x(0) is the bound-
ary point for which the cross section is to be measured. L
is then the path length from the initial to the final boundary
point. We set the initial condition of the vector to the nor-
mal vector for the boundary element of the starting point,
and disallow directional flips throughout the integration.

For the evaluation of (7) we use a modified version
of the variable order Runge-Kutta method by Cash and
Karp [9]. It is modified in the sense that a minimal step size
hmin 1S introduced. Once the integration algorithm tries to
use a step size h < hy,;n We stop the integration and de-
clare the current integrator state as the end point. In this
way we stop the integration when either a boundary point
or a stagnant point (where the step size will tend to zero)
is reached. The combination of an integrator with adap-
tive step size and the boundary integral method thus yields
a method that will naturally adapt to the problem at hand.
If a lot is known about the shape of the boundary (i.e. we
have a high resolution image) this information will be used,
without requiring too many steps to integrate from an ini-
tial point on the boundary to the target point. For very thin
structures (thickness in the order of a few pixels) the method
will automatically result in subpixel accuracy.

5. EXAMPLES

This section presents examples for cross section measure-
ments: a budding domain, and a spinous process of a ver-
tebra. We set u = 1 and h,,;, = 0.005, and the relative
error tolerance of the integrator to e = 10~*. Figures 1(a)
shows the discretized domain of the budding example, with

30verlined variables denote variables given in a locally defined coordi-
nate system of a boundary element, where the x> direction coincides with
the normal vector.
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(a) Discretization, with boundary elements
and associated normal vectors.

(b) Normalized velocity field. Light gray ar-
rows indicate the prescribed inflow veloci-
ties.
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(c) Cross sections.

Fig. 1. The budding domain.

its boundary elements and the associated normal vectors.
Figures 1(b) and 2(a) show the normalized flow fields of
the examples, and the computer tomography (CT) image of
the spinous process*. Figures 1(c) and 2(b) show their re-
spective measures for the cross sections. Of special interest
is the behavior close to the branching point for the spinous
process. While the Stokes flow based approach produced
sensible results, a method based for example on finding the
nearest point on the opposite boundary would lead to unrea-
sonable results. The budding domain exhibits a vortex in its
flow field (see Figure 1(b)). The path lines perpendicular to
the flow field of the budding domain capture the rectangular
part of the domain well. The cavity shows the end points
of several path lines at the stagnant center of the vortex.

4The authors would like to thank Prof. Yamamoto for providing the
image. The boundaries were extracted by means of an active contours
based approach.
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(a) Normalized velocity field and CT image. Light

gray arrows indicate the prescribed inflow veloci-
ties.

(b) Cross sections.

Fig. 2. The spinous process.

One could for example connect these path lines by requir-
ing minimal change of direction at the joining point. We
see that through the presence of the vortex, a measure for
the cross section of the budding part of the structure as well
as of the rectangular part can be given. This would not have
been possible with an approach based on Laplace’s equation
(heat flow). Note, that the observations made in this section
will have correspondences in the three-dimensional case.

6. CONCLUSION AND FUTURE WORK

In this paper a Stokes flow based method for measuring
cross sections of two-dimensional structures was presented.
This method is more versatile than the Laplace equation
based approach. A greater variety of domains can be han-
dled; e.g. branching and budding domains. There is no re-
striction to domains that are enclosed by two simply con-
nected surfaces. A boundary integral approach was used
to deal easily with arbitrary shaped boundaries, yielding a
clean method, without the need for discretization of the in-
terior of the domain. The method is extendable to three
dimensions, where one of the natural geometric measure-
ments would be cross-sectional surface area, and we will
expect to find lines of stagnant points (instead of isolated
stagnant points at the center of vortices). Future work could
include the extension to three dimensional problems, inves-
tigations on the handling of stagnant points/lines (the vor-
tices), and center line construction.
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