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ABSTRACT

We propose an extension of the conformal (or geodesic) ac-
tive contour framework in which the conformal factor de-
pends not only on the position of the curve but also on
the direction of its tangent. We describe several proper-
ties for variational curve segmentation schemes that justify
the construction of optimal conformal factors (i.e., learning)
in strong connection with pattern matching. The determi-
nation of optimal curves (i.e., segmentation), can be per-
formed using either the calculus of variations or dynamic
programming. The technique is illustrated on a road detec-
tion problem for different signal to noise ratios.

1 Introduction
Image segmentation, which we will define here as the deter-
mination of structures in an image, is a central problem of
artificial vision. Elongated structures such as roads in a 2D
aerial photography or an arteries in a 3D computed tomogra-
phy dataset can be represented by open curves. Closed pla-
nar curves can be used to delimit regions in 2D. In this work
we will consider the general problem of detecting open or
closed curvesΓ from n-dimensional imagesI on somep-
dimensional color space.

Γ : [0, 1] → Rn andI : Rn → Rp (1)

Kasset al. introduced thesnakeor active contourmodel
[5] in which an initial curveΓ|t=0 is deformed in order to
minimize an energyE(Γ, I). This framework was given
a differential-geometric interpretation and implemented via
level sets in [2, 6]. In [2] this is calledgeodesic active con-
tours and in [6] the model is referred to asconformal ac-
tive contours. Since the flow in both papers is not really
an intrinsic geodesic minimizing flow, we prefer the term
“conformal” which we will use throughout this paper. The
underlying energy functional in the model is

E(Γ, ΨI) ,
∫

Γ

ΨI(Γ(s)) ds, (2)

where the conformal factor

ΨI : Rn → R+ (3)
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is constructed from the image, for example by taking some
decreasing function of some edge detector. A standard choice
for scalar images isΨI(x) = 1/(1 + ‖∇I(x)‖).

SinceΨ is small near edges, edges will attract the curve
Γ as it is deformed to minimize the energy (2). Moreover
since (2) is theΨ-weighted length, any irregularities ofΓ
will be penalized.

A number of different approaches using more global
constraints have also been proposed such as in [8, 16]; see
the book [11] and references therein.

While the conformal active contour formulation is very
elegant (in particular it is variational and has a geometric
interpretation) it does not ensure that the curve bealigned
with the boundary. In fact direction information is com-
pletely absent and the formulation is purely isotropic. In
this work we propose to introduce directional information
according to

E(Γ,ΨI) ,
∫

Γ

ΨI(Γ(s), Γs(s)) ds, (4)

where the conformal factorΨI is not only a function of the
location of the position of the curve but also its tangent di-
rectionΓs on the unit sphereSn−1.

ΨI : Rn × Sn−1 → R+ (5)

In this framework, a cost is attributed at each point to each
direction of space. This is more general than previous ex-
tensions of the conformal active contour model proposed
independently in [15, 7, 10] where direction information is
reduced to a vector fieldv and the conformal factor is of the
form ΨI(x,

−→
d ) =

−→
d .v(x).

We propose in Section2a set of natural properties which
indicates the strong ties between our approach and pattern
matching. We then propose a parametric pattern matching
model and show how optimal (according to our functional)
conformal factors can be determined. In Section3 we show
how optimal curves can be determined (i.e., how to segment
the image) using the calculus of variations or dynamic pro-
gramming. Examples of this directional segmentation of
real images are shown in Section4. Due to space constraints
full mathematical will be provided in [9].



2 Pattern Detection
We would like to construct conformal factors from some lo-
cal pattern detector. We will show how this can be motivated
by a several natural properties which we want our scheme
to satisfy, and then propose a particular pattern detector in-
spired by image matching.

2.1 Properties of Conformal Factor

Here,
c→ denotes convergence with respect to some chosen

norm.

• Continuity with respect to the curve

(Γ′ c→ Γ) ⇒ (E(Γ′,ΨI)
c→ E(Γ, ΨI)) (P1)

Human experts typically do not agree perfectly on the
position of a certain feature. It is important to capture
the inherently fuzzy nature of segmentation.

• Continuity with respect to the image

(I ′ c→ I) ⇒ (E(Γ,ΨI′)
c→ E(Γ,ΨI)) (P2)

The presence of (limited) noise on the image should
not impact drastically the segmentation result.

• Locality of information employed

∃r0 > 0, ∀Γ,∀I, I ′,

(∀x ∈ Rn, d(x, Γ) < r0 ⇒ (I(x) = I ′(x))
⇒ (E(Γ, ΨI′) = E(Γ, ΨI)) (P3)

Only information near the curve should be used1.

• Invariance with respect to Euclidean transformations2

∀T Euclidean mappingRn → Rn,

E(Γ, ΨI◦T ) = E(T ◦ Γ,ΨI) (P4)

The image is not assumed to be oriented in a mean-
ingful way.

2.2 Pattern Detector
It can be shown [9] that the conformal factors that respect
(P4) are of the form:

Ψ(x,
−→
d ) = Φ(I ◦ T

0,−→e1→x,
−→
d
) (6)

whereT
0,−→e1→x,

−→
d

is a Euclidean transformation that maps

point 0 into pointx and direction−→e1 into direction
−→
d and

Φ : (Rn → Rp) → R+ detects (i.e., is small for) patterns
located at0 (e..g the center of the image) and oriented along−→e1 (e.g., the first direction of the canonical basis). The trans-
formation is defined uniquely up to a rotation around−→e1 and
Φ has to be invariant with respect to such rotations.

1This is a bottom-up assumption. We exclude here higher forms of top-
down reasoning, for example determining the location of an artery from
that of the organs to which it is connected.

2By Euclidean transformationswe mean the group of rigid transforma-
tions generated by rotations and translations.

The energy (4) can be rewritten

E(Γ, ΨI) =
∫

Γ

Φ ◦ I ◦ TΓ(s) ds, (7)

whereTΓ(s) = T
0,−→e1→Γ(s),

−→
Γs(s)

, i.e.,I ◦ TΓ(s) is a version

of the image that has been centered atΓ(s) and aligned with
the local tangentΓs(s).

We propose to use a parametric model forΦ. If the im-
age is expressed in cylindrical coordinatesI(l, r,θ) wherel
is the abscissa along the axis−→e1 we define

Φ(I) ,
∫

l

∫

r

∫

θ

[I(l, r,θ)− µ(l, r)]tΣ−1(l, r)

[I(l, r,θ)− µ(l, r)] dn−2θ rn−2 dr dl. (8)

Note that as stated before,Φ is invariant with respect to rota-
tions around−→e1 . It can be interpreted as a Mahalanobis dis-
tance with a mean vector fieldµ : R2 → Rp and a positive
semi-definite covariance matrix fieldΣ : R2 → S+(Rp). In
order to satisfy the locality axiom (P3) we setΣ−1(l, r) = 0
for l andr larger than some constantr0. In order to satisfy
the continuity properties, (P1) and (P2) both fields have to
be continuous.

Fig. 1. The centerline (white curve) is determined manually.
It is used to define pattern samples such as the two white
boxes.

Given a sample imageI for which some optimal curve
Γ∗ is given (for example by a human expert), we obtain a
set of positive examples{ I+

p }p=1...n+ of the pattern under
consideration by applying the aligning transformsTΓ∗(s)
to I for different values of the arc-length parameters. This
is illustrated on Fig.1. In this work we defined the fields
Φ∗ , (µ∗,Σ∗) to be the mean and covariance of these pos-
itive examples. If the number of examples is large and they
are uniformly sampled, we achieve a Monte-Carlo approxi-
mation and we can then show that ifΨ∗I is constructed from
Φ∗ according to (6) then it is optimal in the sense that

Ψ∗I = arg min
ΨI

E(Γ∗, ΨI). (9)



This procedure respects the additional property:

• Invariance with respect to invertible affine trans-
formations of the color space

∀Γ∗, I, T affine invertibleRp → Rp,

Ψ∗T◦I = Ψ∗I (P5)

3 Image Segmentation
Given a conformal factorΨI (which can be obtained from
an imageI and a pattern detectorΦ as described in Section
2), the segmentation problem is to determine optimal curves

Γ∗ = arg min
Γ∈G

E(Γ, ΨI), (10)

whereG is the space of curves of interest. This could be
for example the set of all closed curves or of open curves
between two user-supplied points.

3.1 Calculus of Variations
As is standard, we can use the calculus of variations to com-
pute the first variation from which we derive a gradient de-
scent evolution. In the case of (4), the evolution equation
derived in this matter is

∂Γ
∂t

= −P(Γs)⊥(∇1Ψ− ∂

∂s
∇2Ψ ) + ΨΓss, (11)

whereP(Γs)⊥ is the projection on the plane locally normal
to the curve and∇1Ψ and∇2Ψ are the gradient of the con-
formal factor (5) with respect to location and direction re-
spectively. This last terms constitutes the difference with
the isotropic conformal active contour model [2, 6].

3.2 Dynamic Programming
Dynamic programming was initially proposed in the 50’s
by Bellman and his school [1] for optimal control. The fun-
damental idea is to choose a seed points and to define the
minimal energy for open curves of extremitiess andx, for
all x ∈ Rn.

E∗(x,Ψ) , min
Γ∈G(s,x)

E(Γ,Ψ) (12)

The value functionE∗ satisfies the Hamilton-Jacobi-Bellman
equation




0 = max−→
d ∈Sn−1

{ ∇E∗(x).
−→
d −ΨI(x,

−→
d ) } ∀x ∈ Rn

0 = E∗(s)
(13)

which can be solved numerically forE∗ and
−→
d∗ (the local

maximal direction) using recently proposed iterative [4] or
single-pass [13] algorithms.

For any pointx ∈ Rn, theglobally optimal curveΓ∗ =
arg minΓ∈G(s,x) E(Γ,Ψ) back tos can be determined by

following the vector field
−→
d∗.

In the isotropic case,
−→
d∗ is aligned with∇E∗. Equa-

tion (13) reduces to the Eikonal equation‖∇E∗(x)‖ =

ΨI(x) which can be solved using the Fast Marching method
[14, 12] or approximated using Dijkstra’s algorithm as in the
LiveWire algorithm [3].

4 Results
The algorithm was applied to a road detection task. A small
portion of the road was outlined manually (Fig.1) to deter-
mine the pattern detector as described in Section2.

(a) Calculus of variation. The initial curve is in white, final result in
black. A few intermediate curves are shown in gray.

(b) Dynamic programing. The seed region is a disc at the crossroad
(not represented).

Fig. 2. Examples of segmentation.



The two techniques (calculus of variations and dynamic
programing) proposed in Section3 result in correct segmen-
tations (Fig.2).

(a) SNR=1.0 (b) SNR=1.0

(c) SNR=0.5 (d) SNR=0.5

Fig. 3. Segmentations at different Signal to Noise ratios.
Compare to Fig.2.

As shown on Fig.3, the algorithm is fairly resistant to
noise3. Note that in the extreme case where the energy of
the noise is the double of the energy of the image roads are
still recovered mostly correctly by both approaches. It is in-
teresting to notice that dynamic programing resulted in two
different but equally valid ways to reach the crossroad from
the bottom right of the image (Fig.3(b) and3(d)). An in-
correct “shortcut” was found in Fig.3(d) from the top left
corner. Note that on the same region calculus of variation
resulted in the correct segmentation (Fig.3(c)). In that case,
the correct (with respect to the road detection task) curve is
not the global minimum of the energy (or else it would have
been determined by dynamic programing). In that case, cal-
culus of variations being essentially a gradient descent tech-
nique, converged to a local minimum closer to its starting
point (the initial curve). The sensitivity to local minima is
therefore sometimes desirable since it gives the user some
control over the final segmentation.

5 Future Research
Future research will focus on the learning procedure as well
as slightly modified versions of the functional (4).

3Gaussian white noise was added to the image.

The technique will be applied to the segmentation of
medical images such as arteries from computed tomography
datasets or neural tracts from diffusion weighted magnetic
resonance imagery.
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