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ABSTRACT

In this paper we propose a principled approach for shape comparison. Given two surfaces, one to one corre-
spondences are determined using the Laplace equation. The distance between corresponding points is then used
to define both global and local dissimilarity statistics between the surfaces. This technique provides a powerful
method to compare shapes both locally and globally for the purpose of segmentation, registration or shape anal-
ysis. For improved accuracy, we propose a Boundary Element Method. Our approach is applicable to datasets
of any dimension and offers subpixel resolution. We illustrate the usefulness of the technique for validation of
segmentation, by defining global dissimilarity statistics and visualizing errors locally on color-coded surfaces. We
also show how our technique can be applied to multiple shapes comparison.

1. INTRODUCTION

The ability to quantify both local and global differences between shapes is an important step in computer aided
medical diagnosis.

After imaging and segmentation have been performed, shape comparison techniques can be used to determine
the deviation some structure or organ has to some standard template. Such differences in shape can be used for
pathology diagnostic. For example, abnormal brain ventricle shape is a symptom of schyzophrenia.

Another application of shape comparison is the validation of image segmentation techniques. The diversity of
proposed segmentation algorithms raises the issue of performance evaluation. For a given organ, which algorithm
results in the most accurate segmentation? How can its robustness be quantified? Using a measure of shape
similarity, the performance of a particular algorithm can be quantitatively assessed by comparing its output to
a known ground truth, a manual segmentation or the output of another segmentation algorithm.

In this paper we describe a mathematical methodology to address the problem of shape comparison by deter-
mining one-to-one correspondences between two shapes and defining both global and local similarity statistics.
To compare more than two shapes, statistics are computed with reference to a mean shape.

Section 2 motivates our approach. In Section 3 we introduce the Laplace equation and propose different
methods to solve it. In Section 4 we show how this can be used to define corresponding points between two
shapes. We also show how to compare more than two shapes by using a mean shape. In Section 5 we illustrate our
method for the purpose of validation of image segmentation. We show how to visualize locally the dissimilarity
between the surfaces allowing the user to analyze the accuracy of a segmentation in an anatomically meaningful
way. We also demonstrate how global metrics can be derived to quantify the accuracy of the segmentation. The
complete methodology is illustrated on synthetic and real datasets.
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Figure 1. The minimal Euclidean distance between points may lead to correspondences that are not unique and not
symmetric.

2. MOTIVATION AND RELATED WORK

This paper is concerned with shape comparison, i.e., with quantifying similarities between shapes. Similarities
may be defined on different levels of resolution, ranging from global shape metrics to local correspondences. A
classical example for a global shape metric is the symmetric Hausdorff distance, measuring the maximal minimum
Euclidean distance between two sets. While it provides global insight with regards to the “worst-case-deviation”
between two shapes, the symmetric Hausdorff distance (as an example of global shape metric) fails to resolve
local shape variations. See1 for an overview of shape matching techniques.

This paper aims at calculating shape differences on a local level for descriptional flexibility. These local
measures of shape differences may then be interpreted directly or may be used to compute more global shape
similarity metrics.

We represent a shape by a closed hyper-surface: e.g., a closed curve in the plane or a closed surface in
three-dimensional space. Defining a local shape metric then hinges (in the most local case) on establishing
point to point correspondences between surfaces. A method to obtain surface correspondence points should be
computationally efficient, should generalize to different dimensions, and should yield a correspondence map that
is symmetric, one-to-one and ideally also continuous (i.e., homeomorphic). Figure (1) shows some exemplary
correspondences between two curves based on the smallest Euclidean distance from curve to curve and highlights
the desirability of correspondences that are symmetric and one-to-one.

We advocate a Laplace equation based approach to find point correspondences between two surfaces with
the aforementioned properties. This is a natural approach for the following reason: given two surfaces Σ1 and
Σ2, envision a flow field transporting particles starting on surface Σ1 to Σ2. The conditions of (i) symmetry,
(ii) one-to-one correspondence and (iii) continuity are in this setting equivalent to requiring that (i) the flow can
be reversed, (ii) a particle does not get caught up in a vortex or at a stagnant point (unless it started there),
and (iii) particles that start close to each other on Σ1 arrive “close to each other” on Σ2. Condition (ii) yields
a potential flow, i.e., the flow field v can be expressed as the gradient of a scalar potential u, v = ∇u. If the
fluid is assumed to be incompressible, v needs to be divergence free as well, i.e., ∇ · v = 0, but this implies
∇ · ∇u = ∆u = 0, which is Laplace’s equation. Solving Laplace’s equation (with suitable boundary conditions)
between Σ1 and Σ2 will induce point-to-point correspondences between Σ1 and Σ2 through the streamlines of
v. Figure (2) shows the vector fields induced by a distance function of a cavity and by the solution of Laplace’s
equation. All particles starting on the boundary of the cavity and moving along the vector field induced by the
solution of Laplace’s equation will eventually leave the cavity. This is not true for all particles for the vector
field induced by the distance function.

Laplace equation approaches have previously been used in2, 3 for colon surface flattening and centerline
extraction and in4, 5 for thickness measurements. This paper introduces a framework to measure local shape
variability. Given multiple surfaces Σ and a mean (or comparison) surface Σm point correspondences are used
to measure local distance differences. The local distances between surfaces can then be used for visualization



(a) Vector field induced by the dis-
tance function.

(b) Vector field induced by the so-
lution of Laplace’s equation.

Figure 2. Vector fields induced by the distance function and by the solution of Laplace’s equation. Dark values indicate
larger solution values.

purposes (e.g., to color-code the mean shape) and to define local and global statistics. Statistics may be computed
at a single point of a mean surface over all surfaces Σ to assess local shape variation. Alternatively one can
compute statistical measures of distance variations over a single surface. The latter is particularly useful in the
context of validation of surface segmentations: how good is a segmentation compared to a given ground truth.

3. LAPLACE EQUATION

Assume that we have two regions R1 and R2 whose boundaries Σ1 and Σ2 are surfaces implicitly represented as
zero level sets of functions φ1 and φ2, i.e.,

Σi = ∂Ri = {x / φi(x) = 0}, i ∈ {1, 2}. (1)

Such a representation is natural for partial differential equations based segmentation algorithms. Regions
defined by binary maps and triangulated surfaces can also be represented using level sets.

The Laplace equation 



∇2u(x) = 0 x ∈ R1 ªR2

u(x) = 1 x ∈ Σ1

u(x) = −1 x ∈ Σ2

(2)

underlies Fourier’s law of heat conduction. In this context u can be interpreted as a temperature. Equation
(2) describes the steady state temperature profile u in between the surfaces (here, R1ªR2 , (R1\R2)∪(R2\R1)
is the symmetric difference of the two regions) resulting from prescribed boundary conditions on Σ1 and Σ2. The
field u is harmonic. It is smooth and its derivatives of all order exist.6 Moreover the gradient does not vanish
and therefore the vector field

v =
∇u

‖ ∇u ‖ (3)

is also smooth. By following v (resp. −v) starting at a point on Σ1 (resp. Σ2) we are assured to reach a unique
point on Σ2 (resp. Σ1). This is a very desirable property for establishing one-to-one point correspondences
between Σ1 and Σ2. A variety of schemes exist to solve (2) based on gradient descent (the Heat equation) or
superposition of fundamental analytic solutions (Boundary Element Method).



3.1. Heat Equation

Instead of solving the steady state problem (2) directly, we can use the heat equation

∂u

∂t
= ∇2u, (4)

which with appropriate boundary conditions will converge to the solution of (2). In the simplest possible case,
we discretize the time derivative using an Euler forward or backward approximation and the spatial derivatives
using central differences.

3.2. Boundary Element Method (BEM)

The level set representation yields subpixel accuracy. Using subpixel boundary information is not straightforward
with finite difference based schemes . In BEM, the boundary is approximated by N elements and the solution is
constructed based on the superposition of the fundamental solutions of the Laplace equation for each boundary
element.7 For simple boundary parameterizations, analytical solutions exist. Furthermore, the boundary element
method allows for analytical gradient computations which is very useful when calculating (3).8, 9

The BEM is a powerful and accurate method for solving the Laplace equation on the usually complicated
domains resulting from the segmentation of medical datasets. A 2D synthetic example is shown on Fig. 3 along
with a zoom-in on the solution of the Laplace equation with the two proposed methods. The BEM is not
restricted to the underlying grid and can take full advantage of the subpixel accuracy of the boundaries. It
therefore outperforms the simple finite difference approach. More details can be found in Appendix 6.

(a) Solution of the Laplace equation on R2 ªR1. (b) Streamlines defined from the gradient of the
solution of the Laplace equation.

5 pixels

(c) Finite difference method (Heat equation). (d) Boundary element solution with streamlines
of the gradient field.

Figure 3. 2D synthetic example and zoom in on rectangular region.



Figure 4. Local dissimilarity for a 2D synthetic example.

4. DEFINING A DISTANCE BETWEEN SHAPES

4.1. Local Dissimilarity

As explained in the previous section from any point s on surface Σ1, (resp. Σ2), a trajectory can be determined
to Σ2, (resp. Σ1), by following the characteristics (i.e., the gradient) of the Laplace equation. A particle can be
moved from one surface to the other according to





st(t) = −∇u ◦ s(t) s ∈ Σ1

st(t) = +∇u ◦ s(t) s ∈ Σ2

s(0) = s

(5)

As explained previously such correspondence are well defined, one to one and symmetric.

To each point s on one of the two surfaces we can therefore associate the length l to the corresponding point
s′ on the other surface. We propose to define the local error E as −l where Σ1 is inside Σ2 and +l otherwise.
This scalar field is defined on both surfaces and describes locally the dissimilarity between the surfaces. See
Figure 4.1 for an illustration on a synthetic example.

4.2. Visualization

The surfaces Σ1 and Σ2 (or any surface lying in between those) can be colored with the local dissimilarity scalar
field E (Fig. 6(a), 6(b), 6(c)). We use a perceptually linear color scale as proposed by Lefkowitz et al..10

4.3. Metrics

We define a probability space (Σ1 ∪ Σ2, P ) on the union of the surfaces by P (S) = A(S)
A(Σ1)+A(Σ2)

where A(S)
is the area of an element of surface S ⊂ Σ1 ∪ Σ2. The local dissimilarity field E can then be interpreted as a
random variable.

The statistics of E can be used to define several metrics that will quantify the global dissimilarity between
the surfaces.

• sup(|E|) is the largest distance between corresponding points of Σ1 and Σ2. This information is equivalent
to the Hausdorff distance. Moreover, inf(E) and sup(E) are the largest under and over-segmentation errors.
The quantiles of E convey the same information as the partial Hausdorff distance.

• mean(|E|) is the average distance between the surfaces.

• P (E ≤ −3) is the probability that Σ1 would be inside Σ2 by 3 units.

• the probability density function pE of E gives the full error distribution.

See Table 1 for the values of these statistics on the synthetic and brain datasets. Additional metrics can easily
be defined. For example, the expectancy of 1/(1 + pE2) would be equivalent to Pratt’s Figure of Merit.11



99% 1%
sup(E) percentile inf(E) percentile mean(|E|) P (E ≤ −3)

Synthetic (pixel) 31.42 31.24 -28.21 -20.40 5.32 9.50%

Table 1. Global statistics of the local dissimilarity E on the synthetic example.

4.4. Comparing n surfaces

In order to study the local variation in a set of n surfaces defined by the level sets function φ1...φn, the level set
function of the mean shape is defined to be

φm ,
n∑

i=1

φi (6)

and all n shapes are compared to the mean surface.

Figure 4.4 shows the local dissimilarity to a mean shape for n = 8 prostates. Surfaces were segmented from
pre-operative 1.5T MR images acquired using an endorectal coil integrated with a pelvic multi-coil (Signa LX,
GE Medical systems, Milwaukee, WI). The slice thickness is of 3 mm with a slice gap of 0 mm, matrix of
256x192.

5. VALIDATION FRAMEWORK

The previously defined formalism can be applied directly to the quantitative validation of segmentation if the
ground truth is known. In that case, one of the surfaces is set to be the segmentation result and the other
the ground truth. The dissimilarity between the segmentation and the ground truth can then be compared
both quantitatively and qualitatively. If the ground truth is not available, the results of segmentations obtained
through different techniques can be compared (e.g. automatic and human expert).

In,12 Zhang reviews classical validation metrics. These discrepancy metrics are based either on the sole
frequency of mis-segmented voxels (e.g, the Dice similarity coefficient) or on their position via some sort of
distance information (e.g., the Hausdorff distance, Yasnoff’s Normalized Discrepancy etc.). Typically no distinc-
tion is made between under and over-segmentation and the Euclidean distance is employed and, as in the case
of the Hausdorff distance, ill-defined underlying correspondences between the ground truth and the segmenta-
tion are implicitly used. Moreover many of these metrics are dimensionless scalars whose interpretation can be
problematic.

In contrast the error distance E discriminates between under and over-segmentation (negative values of the
local dissimilarity scalar field E will correspond to under-segmentation and positive values will correspond to
over-segmentation). Moreover it is based on well-defined, physically grounded correspondences and has the
dimension of a distance.

Here, as an illustration we use, as the ground truth, the expert manual segmentations of a full brain and a tu-
mor from the Brain Tumor Database13 and the output of a previously proposed algorithm14 as the segmentation,
see Figures 6 and 7 and Table 2.

99% 1%
sup(E) percentile inf(E) percentile mean(|E|) P (E ≤ −3)

Brain (mm) 14.08 7.09 -86.10 -11.87 2.31 4.03%

Tumor (mm) 6.83 5.15 -4.75 -3.18 1.58 1.17%

Table 2. Global statistics of the local dissimilarity E on the brain and tumor examples.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i) Mean shape

Figure 5. Comparison of n = 8 prostates to a mean surface. These are color images.

In the proposed brain segmentation a large portion of the left hemisphere was left out (under-segmented)
and the superior sagittal and transverse sinuses (venous channels in the back of the brain) were erroneously
classified as brain (over-segmented). This visualization scheme allows researchers and clinicians to interpret the
performance of a segmentation in an anatomically meaningful way.



(a) Ground Truth (b) Segmentation

(c) The underlying ground truth and segmentation on the gray slice are shown on
the right. Over-segmented regions are in dark gray, under-segmented regions are in
light gray.

Figure 6. Real dataset of a full brain The surfaces are colored with the error distance E using a perceptually linear color
scale.10 These are color images.

6. CONCLUSION

We proposed a novel technique for surface comparison as well as a probabilistic framework that extends distance-
based shape comparison metrics. Our approach is based on constructing one-to-one correspondences between the
two shapes under study. The correspondences are based on the Laplace equation. which can be solved numerically
by iterating the Heat equation or analytically using a Boundary Element Method. The method can be applied
to datasets of any dimension and offers subpixel resolution. We believe that the general concepts outlined in this
paper could also prove useful for other applications such as shape analysis and non-rigid deformations.
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Figure 7. Real dataset of a tumor. The surfaces are colored with the error distance E using a perceptually linear color
scale.10 These are color images.

Appendix
For an approximate boundary element solution of (2) we start with the weighted residual formulationZ

R

�∇2ũ
�
wl dR ≡

Z
R

εRwl dR = 0, (7)

where ũ is the approximate solution, wl is the weighting function, εR denotes the error, and R = RSEG ª RGT is the
symmetric difference∗ of the sets RSEG and RGT. Applying Green’s theorem to (7) twice yields7Z

R

�∇2wl

�
ũ dR =

Z
Σ

∂wl

∂n
ũ− ∂ũ

∂n
wl dΣ.

If we choose wl as the fundamental solution of (2) centered at xl, i.e.,∇2wl = δ(r), where r := ‖x − xl‖, and take into
account that xl might be a boundary point, we obtain

clũ(xl) =

Z
Σ

∂ũ

∂n
wl − ũ

∂wl

∂xl
dΣ,

where the fundamental solution wl is given as

wl = − 1

2π
ln r in dimension 2, wl =

1

4πr
in dimension 3,

and (for planar boundary elements)

cl = 0 if xl ∈ (R ∪ Σ)c, cl =
1

2
if xl ∈ Σ, cl = 1 otherwise.

The boundary Σ is approximated by N boundary elements Σi, i = 1, 2, . . . , N (i.e., either line segments or triangular
patches) with ũ and ∂ũ

∂n constant on each such element†. We can then write

NX
i=1

q̃i

Z
Σi

wl dΣi = clũ(xl) +

NX
i=1

ũi

Z
Σi

∂wl

∂n
dΣi. (8)

The integrals in (8) can be computed analytically.8, 9 We define

gli =

Z
Σi

wl dΣi, hli =

Z
Σi

∂wl

∂n
dΣi, G = (gli), H = (hli).

∗AªB = (A \B) ∪ (B \A)
†More accurate parametrizations exist.



In our case, only temperature values, ũ, are prescribed on the boundary Σ. It remains to determine the N unknowns,
q̃i, by (8). If we pick the N points xl as the centers of gravity of the N boundary elements, compute G and H based on
these points and stack the values for q̃i and ũi in the two vectors q and u respectively, we obtain the matrix equation

Gq =

�
1

2
I + H

�
u. (9)

Solving (9) for q yields the complete boundary information. Then, every value ũ in the interior of R can easily be obtained
by

ũ(x) =

NX
i=1

q̃igli − hliũi.

The gradient is then given by

∇ũ(x) =

NX
i=1

q̃i

Z
Σi

∇xlwl dΣi − ũi

Z
Σi

∇xl

�
∂wl

∂n

�
dΣi, (10)

Also, all integrals in (10) are solvable analytically.8, 9
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