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Abstract

Segmentation paradigms in diffusion tensor imagery (DTI) are dis-
cussed in this paper. We present a technique for determining paths
of anatomical connectivity from the tensor information obtained in
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1



magnetic resonance diffusion tensor measurements. The basic idea is
to construct optimal curves in 3D space, where the optimality crite-
ria is based on the eigenvalues and eigenvectors of the tensor. These
curves are constructed via partial differential equations computed us-
ing multiple level-set functions. We also discuss our current efforts in
clustering in DTI.

This paper is dedicated to Professor Anders Lindquist on the
occasion of his 60th birthday.

1 Introduction

Fundamental advances in understanding complex biological systems require
detailed knowledge of structural and functional organization in the living sys-
tem. In the case of the human brain for instance, anatomical connections are
related to the information pathways and how this information is processed.

During the past three decades, the neuroscience and medical communities
have witnessed a tremendous growth in the field of in-vivo, non-invasive
imaging of brain function. Magnetic Resonance Imaging (MRI) evolved into
the modality of choice for neuroradiological examination, due to its ability
to visualize soft tissue with exquisite anatomical detail and contrast.

However the resolution of MRI is well above the dimension of neural
fibers and the current understanding of the nervous system is still incomplete
because of the lack of fundamental connectivity information.

Diffusion Tensor MRI (DT-MRI) adds to conventional MRI the capabil-
ity of measuring the random motion (diffusion) of water molecules due to
intrinsic thermal agitation [2, 3]. In highly structured tissues containing a
large number of fibers, like skeletal muscle, cardiac muscle, and brain white
matter, water diffuse fastest along the direction that the fibers are point-
ing in, and slowest at right angles to it. By taking advantage of the very
structure of such tissues, DT-MRI can be used to track fibers well below the
resolution of conventional MRI.

Information obtained by DT-MRI consists of the diffusivities and orien-
tations of the local principal axes of diffusion for each voxel. A wide range
of techniques have been explored to provide explicit connection information
from this tensor field. Early work [13] attempted to use a similarity measure
to group together neighboring voxels. Other methods [4, 21] follow locally the



direction of highest diffusion (this is closely related to the so called “hyper-
streamline” method of [10] for tensor field visualization). In [18] a Markovian
approach is used to regularize the candidate curves.

In this paper we discuss a technique to compute the anatomical paths
which is based on 3D optimal curves computed via multiple level-set func-
tions. The ideas are based on prior work on geodesic active contours [7, 9, 14],
combined with numerical techniques developed in [5, 6]. The basic idea is
that given two user marked points, we construct a 3D optimal-effort curve
connecting these points. The effort is based on weights obtained from the
diffusion tensor. The computational construction of these curves is based on
representing it as the intersection of two 3D surfaces, and evolving these sur-
faces via the techniques developed in [5, 6]. Alternatively, one could use the
work introduced in [15] for this computation. Note that the fast techniques
in [12, 19, 20, 23] can not be used in the general case we discuss below due
to the type of energy we use. This is in contrast with the work in [17], where
the energy is artificially modified to fit the requirements for using these fast
numerical approaches. It is interesting to extend the work in [9] to be able to
incorporate directionality, as done below, into the penalty function, thereby
permitting the use of fast numerical techniques. If the images need to be reg-
ularized prior to the geodesic computation, the approaches in [8, 18] could
be used for example (see also [22] for a general theory for denoising non-flat
features).

2 Active Contours and Diffusion Tensor Imag-
ing

Once we have enhanced the DTI, e.g., via the techniques in [8, 18], we can
use this to construct the flow paths (fiber tracking), e.g., for visualization.

The basic idea for this is to use our prior work on geometric active contours
[7, 14], as well as [9].

2.1 Brief Background on Geodesic Snakes

We briefly review some of the relevant results from [7, 14] now. We work
in the plane for simplicity. All of the results extend to R? as well. We first
define a positive stopping term ¢ : R?> — R which will act as a conformal
factor in the new metric we consider for our snake model. For example, the



term ¢(z,y) may be chosen to be small near an edge, and so acts to stop the
evolution when the contour gets close to an edge. Hence, one may take
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where I is the (grey-scale) image and G, is a Gaussian smoothing filter.
We use ¢ to modify the ordinary Euclidean arc-length function along a
curve C' = (z(p),y(p))” with parameter p given by

ds = (z2 + yﬁ)l/2 dp,
to
dsy = (z) +y5) "¢ dp.

Then we want to compute the corresponding gradient flow for shortening
length relative to the new metric ds,.

Accordingly set
yi= [ 151 9db

> 80 oc
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denote the unit tangent. Then taklng the first variation of the modified
length function L4, and using integration by parts, we get that

Let

Ly(t) oC .
o) = — [ 75, 6nN — (V6 N)R) ds

which means that the direction in which the L, perimeter is shrinking as fast
as possible is given by

oC

Sy = (6r— (Vo- N)N

As we can ignore the tangential component of the speed When evolving
the curve C, this flow is geometrically equivalent to :

oC
o —qb/-;N Vo (2)



This is precisely the gradient flow corresponding to the miminization of
the length functional Ly. The level set, [16], version of this is

ov ., V¥
One expects that this evolution should attract the contour very quickly to
the feature which lies at the bottom of the potential well described by the
gradient flow (3). Notice that for ¢ as in (1), V¢ will look like a doublet
near an edge. Of course, one may choose other candidates for ¢ in order to
pick out other features. This will be done for diffusion tensor images next.

)+ V- V. (3)

2.2 Geodesic Snakes and Diffusion Tensor Imagery

For the case of DTI, we use a combination of the principal direction of the
tensor with a measurement of anisotropy to define g and construct curves
that will indicate the principal direction of flow (fiber tracking). Note that
this can be combined with our prior work [1], where we have shown how
to smoothly construct and complete curves from partial tangent data. The
explicit use of a directionality constraint limits the computational techniques
that can be used to find the optimal curve.

Note that in contrast with what is primarily done in the literature, when
only single slices are used, we use multiple-slices (and then 3D) for these
works. For this we use the computational technique developed in [5, 6],
where the 3D active contour that is deforming toward the minima of the
energy is represented as the intersection of two 3D surfaces. We will then
need to move 3D curves, with fix end points, having the curve represented
as the intersection of two deforming surfaces.

To each point in the domain  C R? we associate a 3 x 3 positive semidef-
inite symmetric matrix A(zx,y, z) with (real eigenvalues) \;(z,y,2) = \;, i =
1,2, 3 and associated unit eigenvectors €;(x,y, z) = €, 1 = 1,2,3. We always
assume that A\; > Ay > A3 > 0.

We define the fractional anisotropy to be [17, 18]:

VO = X2)2+ (Ao — Xg)2 + (A — Ag)2

d(x,y,2) =
V2403 + 23+ )3

We will also consider

’U(Jf, Y, Z) = ¢(.’L’, Y, Z) 61(37, Y, Z)'



2.3 Diffusion Flow

In this section, we will formulate the flow which will move an arbitrary initial
curve with given endpoints to a curve with respect to the weighted conformal
metric defined by v. We state the results in both the plane and in space.

In what follows, we assume that we are given an embedded family of
differentiable curves C(p,t) : [0,1] — R? where p is the curve parameter
(independent of ¢), and ¢ denotes the parameter of the family. The arc-length
parametrization will be denoted by ds so that

_ 2 2 2
ds =[x, +y, + 2, dp.
We can now state our result:

Theorem 1 Let ¢,€; and v be as above. Consider the energy functional

1 L
Lat) =5 [ ller = Colg ds.
0
By minimizing La(t), the following flow is obtained :

Cy = ¢ Css — curl(v) x Cs — V. (4)

Proof.
We note that

LA(t) = 1‘/L 61—03,61—Cs>¢d8
= / [er, 1) + (Cs, ) — 21, C)] g ds
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As above, we can compute that the first variation of LY (#) is :

, L
Li(t) = - /0 (6 Cys — Vb, Cy) ds



In order to compute L% (t) , set

Then since
9 1
L5 (t) = /0 (azx, + by, + cz,) dp,
we have that (integrating by parts)

y 1 Ty Ty Tt
L% (t) :/O Va-| v |2p+Vb| v | yp+Ve | v | zp—apri—byyr—cpzi] dp.
2t 2 2

The expression in the integral is
(ba¥p + Co2p — AyYs — A2 2p) Tt + (ayTp + Cy2p — bpTp — by 2p) Yy + (5)
(@,2p + byp — Cop — CylYp) 2t

Noting that

cy — b,
curllw) = | a, —¢; |,
by — ay
we see that we may write (5) as
Tp
—(curl(v) x | v, |,Cy),
“p
and so
I xp
LA(t) = —/(curl(v) x| yp |,Cy)ds
“p
Since

Liy(t) = Ly (t) = L (t),
the theorem follows. QED

Remarks:



1. The above energy is minimum when the tangent of the curve C'is most
closely aligned with the direction of the principal eigenvector ¢;. More-
over this constraint is weighted by the anisotropy ¢ defined previously.
When A is almost isotropic, we have A\; &~ Ay ~ A3. In this region,
¢ =~ 0 ensures that we will not penalize a curve that would not be
perfectly aligned with €; (which here cannot be considered the unique
direction of diffusion). On the other hand, if A; > Ay > A3 there is no
ambiguity : €; is the preferred direction for diffusion and ¢ ~ 1 ensures
that the curve will follow closely.

2. In two dimensions, we can consider that ¢ = 0 and a, = b, = 0. As is
standard we define curlypy to be the scalar b, — a,.

Therefore the following relation holds :

0
curlgp(v) = 0

by — ay
a
= curlyp p |

Since e, X T=N (T is the unit tangent and N the unit normal), we
get the flow

C; = (¢ — (Vé, N) — curlQD(v))N (6)
Note that by the standard Frenet formulas in the plane

Cys = kN,
so that equations (4) and (6) are consistent.

3. The above curve deformation is implemented in 3D deforming the inter-
secting of two 3D surfaces. In addition, the end points of the deforming
curve are fixed.

4. In case an advanced initialization is needed, we can use for example
the technique in [17]. We are also investigating the use of the geodesics
obtained from just | ¢ds, which can be computed using fast numerical
techniques, to initialize the flow.



5. The above described technique can be used for finding discrete con-
nectivity lines. We are currently also working on the use of techniques
such as those in [11] to cluster the diffusion direction information.

3 Conclusions

In this paper, we discussed a geodesic snake technique for the segmentation
of diffusion tensor imagery. DTI is an increasing important non-invasive
methodology which can reveal white matter bundle connectivity in the brain.
As such it is useful in neuroscience as well as image guided surgery and
therapy.

Using the conformal metric ideas we derived an explicit flow for the seg-
mentation of such imagery in three dimensions. In future work, we plan to
test our flow on some explicit examples. Level set ideas will of course be
very important in the computer implementation and the development of fast
reliable algorithms based on the equation (4).
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