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Abstract

In this paper we present a new algorithm for 3D medical image segmentation. The algorithm is versatile, fast, relatively simple to

implement, and semi-automatic. It is based on minimizing a global energy defined from a learned non-parametric estimation of the

statistics of the region to be segmented. Implementation details are discussed and source code is freely available as part of the 3D

Slicer project. In addition, a new unified set of validation metrics is proposed. Results on artificial and real MRI images show that

the algorithm performs well on large brain structures both in terms of accuracy and robustness to noise.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of segmentation, that is finding regions

in an image that are homogeneous in a certain sense, is

central to the field of computer vision. Medical appli-

cations, visualization and quantification methods for

computer-aided diagnosis or therapy planning from

various modalities typically involve the segmentation of

anatomical structures as a preliminary step.

We consider the problem of finding the boundaries of
only one anatomical region with limited user interaction.

Interactivity is desirable since the user is given the op-

portunity to make use of important implicit external

knowledge to guide the algorithm toward a result that

makes sense for her task. The segmentation process can be

repeated in order to identify asmany regions as necessary.

Many different approaches have been proposed to

address the segmentation problem which can be dually
considered as finding regions or finding boundaries (see

(Morel and Solimini, 1994), and references therein). Fo-

cusing only on the boundaries is computationally less

complex but also less robust since information inside the

region is discarded. This is the approach of the snakes and
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active contours variational methods (Kass et al., 1988;

McInerney and Terzopoulos, 1996; Caselles et al., 1995).
While the original region-growing algorithm (Gonz-

alez and Woods, 2001) formalism is somewhat crude,

interesting extensions have been proposed by Adams

and Bischof (1994) where some statistical information is

derived from the region as it expands. These techniques

have been applied to medical image analysis (Justice

et al., 1997; Pohle and Toennies, 2001). The relation

between region-growing and active contours has been
studied by Zhu and Yuille (1996) and more recently

active contours have been extended by Chan and Vese

(2001) and Paragios and Deriche (2002) to an elegant

active regions formalism where regions boundaries are

deformed according to an evolution equation derived to

minimize an energy based on statistics on the regions.

This paper gives full details of our previously pub-

lished conference results (Pichon et al., 2003). We briefly
present a new variational method for region based seg-

mentation based on non-parametric statistics (Section 2)

and discuss how this algorithm has been implemented in

the open-source software 3D Slicer (Section 3). We

propose a novel validation framework (Section 4) and

use it to analyze the performance of the proposed al-

gorithm both on simulated and manually segmented

images (Section 5). Appendices A and B give full

mail to: eric@ece.gatech.edu
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mathematical details on the fundamental flow and the

non-parametric estimation of image statistics.

We believe that the validation metrics outlined here

should prove valuable for a number of segmentation

problems in medical and other types of imagery.
2. Method

In this section we briefly present a very general flow

for image segmentation. This technique is based purely

on the statistics of the image. In particular it does not

necessitate external information (such as an atlas) nor
makes extra anatomy or modality-based assumptions.

This method is therefore extremely versatile and we will

show in Section 5 that it can compete with more spe-

cialized approaches.

Given an image I and a region R, we can write, using

Bayes’ rule,

P ðx 2 RjIðxÞ; krIðxÞkÞ

¼ P ðIðxÞ; krIðxÞkjx 2 RÞ � P ðx 2 RÞ
P ðIðxÞ; krIðxÞkÞ :

Assuming uniform priors Pðx 2 RÞ and P ðIðxÞ; krIðxÞkÞ
the likelihood P ðIðxÞ; krIðxÞkjx 2 RÞ and the posterior

distributions Pðx 2 RjIðxÞ; krIðxÞkÞ are proportional.

We use the notation PRðIðxÞ; krIðxÞkÞ for either the
likelihood or the posterior. This can be justified by the

facts that:

• we do not know Pðx 2 RÞ.
• using P ðIðxÞ; krIðxÞkÞ would introduce undesired

global information. The existence in the dataset of

another unrelated region with statistics similar to re-

gion R should not have any influence. 1

We accordingly define the energy functional

EðI ;RÞ :¼
Z
R
PRðIðxÞ; krIðxÞkÞdx: ð1Þ

Here, EðI ;RÞ is the volume of the region R where each

voxel is weighted by the probability PRðIðxÞ; krIðxÞkÞ of
the intensity and the norm of the gradient of I at this

voxel. Likely voxels therefore contribute more to EðI ;RÞ
than unlikely voxels and the energy of a region R will be

high if and only if its voxels have consistent values in
terms of intensity and norm of the gradient.

We can deform an initial region R0 at t ¼ 0 into a

region RðtÞ to maximize EðI ;RÞ. We show in Appendix

A that the gradient ascent flow is

oS
ot

¼ PRðI ; krIkÞN; ð2Þ

where SðtÞ ¼ oRðtÞ the boundary of R at time t and N is
the unit outward normal.
1 That would be acceptable in the ideal case of a bimodal image.

Most medical datasets are composed of more than two classes.
As the region is deformed, PR is estimated in a non-

parametric fashion as detailed in Appendix B.
3. Implementation

We implemented our method as a module of the

open-source software 3D Slicer. It is freely available at

http://www.slicer.org. Thanks to the properties of our

flow, we were able to use a very efficient method for

evolving the surface. Segmenting a large structure typi-

cally 2 takes less than 1 min.

The flow (2) is unidirectional (the surface can only
expand since pR P 0) any voxel x is eventually reached at

a time T ðxÞ. Knowing T is equivalent to knowing R or S
since by definition

RðtÞ ¼ fx; T ðxÞ6 tg;
SðtÞ ¼ oRðtÞ:

�
ð3Þ

Solving the flow (2) for SðtÞ is equivalent to solving for

T ðxÞ the Eikonal equation

krT ðxÞk � pRðxÞ ¼ 1: ð4Þ
This can be done very efficiently using the Fast

Marching method (Tsitsiklis, 1995; Sethian, 1999).

Starting from known seed points which define the ini-

tial surface, the algorithm marches outward by con-

sidering neighboring voxels and iteratively computing

arrival times T in increasing order. The seed points are
set by the user inside the structure to be segmented. By

construction, when computing T ðxÞ, the surface con-

tains the voxel x as well as all voxels for which T has

already been computed. The algorithm terminates when

T is known for all points. Then using (3) we can de-

termine SðtÞ for any t and let the user determine what

time t0 of the evolution corresponds best to the region

she wants.
Note that our method is, in its implementation,

reminiscent of region growing. The min-heap data

structure which makes Fast Marching efficient is the

direct equivalent of the sequentially sorted list in the

seeded region growing algorithm (Adams and Bischof,

1994). In fact our algorithm could be made a direct non-

parametric extension of seeded region growing simply

by artificially forcing arrival times to zero for all points
inside the surface S. Relations between region growing

and variational schemes have been previously exposed

by Zhu and Yuille (1996).
4. Validation framework

Objective and quantitative analysis of performance is
absolutely crucial (but often overlooked) when propos-
2 3 GHz processor, 1 GB memory.

http://www.slicer.org


3 Note: this is the mean of errors and not the mean error. Valid

points are not taken into account at all.
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ing a segmentation algorithm. Since designing a seg-

mentation method is challenging (lack of unifying for-

malism, high diversity in the applications, subjectivity,

implicitness, etc.) it does not come as a surprise that the

validation of such an algorithm is also challenging.
Different methods have been studied (see (Zhang, 1996),

and references therein). We propose a unifying frame-

work for discrepancy measures based on the number

and the position of mis-segmented voxels and show how

it relates to classical measures. We then apply it to the

validation of segmentation of realistic synthetic images

(for which the ‘‘ground truth’’, i.e. perfect segmentation

is known) at different levels of noise for accuracy and
robustness assessment as well as to manual expert seg-

mentation of real datasets.

4.1. Classical discrepancy measures

Different measures have been proposed to assess the

resemblance between a proposed segmentation S and the

corresponding ground truth G. The Dice Similarity
Coefficient has been widely used and it can be derived as

an approximation of the kappa statistic (a chance-

corrected measure of agreement, see (Zijdenbos et al.,

1994)). It is defined as

DSCðS;GÞ :¼ VS\G
1
2
ðVS þ VGÞ

;

where VX is the volume (number of voxels) of set X .

One disadvantage of this coefficient is that it only

takes into account the number of mis-segmented voxels

and disregards their position and therefore the severities

of errors. This was corrected in Yasnoff’s discrepancy

measure DM (Yasnoff et al., 1977) and the Factor of

Merit FOM (Strasters and Gerbrands, 1991):

DM :¼ 1

N

XN
i¼1

dðiÞ2;

FOMe :¼
1

N

XN
i¼1

1

1þ dðiÞ2
;

where N is the number of mis-segmented voxels and

dðiÞ is the distance from the ith voxel to the ground

truth. Another popular measure is the Hausdorff

distance

HðS;GÞ :¼ maxfmax
s2S

min
g2G

ks� gk;max
g2G

min
s2S

ks� gkg:

HðS;GÞ is the maximum distance we would have to
move the boundaries of one set so that it would en-

compass completely the other set. As this is extremely

sensitive to extreme errors, the partial Hausdorff dis-

tance (Huttenlocher et al., 1993) Hf ðS;GÞ can be intro-

duced as the maximum distance we would have to move

the boundaries of one set so that it would cover f% of

the other set.
4.2. Proposed framework

Consider now the error-distance

dðxÞ :¼
0; x 2 S \ G;
mins2S kx� sk; x 2 G n S;
ming2G kx� gk; x 2 S n G:

8<
:

Assuming that all points x 2 S [ G are equally likely d
can be seen as a random variable D which describes

completely the discrepancy between the segmentation S
and the ground-truth G. Using basic statistical tools we

can define the probability of error (PE), mean of errors 3

(lD>0), standard deviation of errors (rD>0) and partial

distance-error (Df ) by

PE :¼ PrðD > 0Þ;

lD>0 :¼ meanðDjD > 0Þ;

rD>0 :¼ stdevðDjD > 0Þ;

Df :¼ f � quantileðDÞ:
These measures have a natural intuitive interpretation:
• PE is the probability for a voxel x 2 S [ G to be mis-

classified (either over- or under-segmented, i.e.

ðx 2 S [ GÞ n ððS \ GÞÞ).
• An erroneous voxel is on average lD>0 pixels off. This

value is very typical if the standard deviation rD>0 is

small.

• D1�f is the error distance of the worst f% voxels. For

example D0:5 is the median of errors. Equivalently the
maximum distance we would need to move erroneous

voxels for the error to be improved to PE ¼ f .
As an example, PE ¼ 10%; lD>0 ¼ 3:1; rD>0 ¼ 0:3 and

D0:99 ¼ 14 would mean that the overlap between the

ground truth and the proposed segmentation is 90%. The

10% remaining pixels are either under-segmented or over-

segmented pixels (‘‘false positive’’ i.e. pixels that are in S
and not in G). On average these pixels are 3.1 pixels off.
This value is very typical since the standard variation is

low (0.3). However there is no reason for the error to be

Gaussian and, here, the tail probability is not negligible

since the worst 1% pixels are at least 14 pixels off. This

could be due to a thin, long finger ofmis-segmented pixels.

Fig. 1 illustrates three different cases of mis-segmen-

tation. Figs. 1(a) and (b) have approximately the same

probability of error PE (and therefore the same DSC
(see Eq. (5)) but Fig. 1(a) has a lower lD>0 and partial

distance error D0:95. This is due to the fact that even

though Figs. 1(a) and (b) have roughly the same number

of mis-segmented pixels, the errors tend to be more se-

vere in Fig. 1(b). Fig. 1(c) illustrates the case of a low

probability of error PE and a high lD>0. This might

seem counter-intuitive. lD>0 is the mean of mis-classified



Fig. 1. Three synthetic examples of mis-segmentation. The ground

truth G is in gray and the segmentation S is in black.
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points. Here, most points are correctly classified and the

few points that are not are rather far off which explains a

high lD>0. Moreover, the standard deviation of errors

rD>0 is lower than in Fig. 1(b) since there are less small

errors and therefore lD>0 is typical. Depending on the

end-task Fig. 1(a) might be a better segmentation than
Fig. 1(b) or not and any of the above mentioned mea-

sures might be the most important metric.

These measures are related to the measures presented

in Section 4.1 according to

1�DSC6PE ¼ 1�DSC

1� DSC
2

; ð5Þ

1

FOMe

� 16l2
D>0 þ r2

D>0 ¼ DM; ð6Þ

H
1� f

1�PE
6D1�f 6H

1�f
2

ðin particular; D1 ¼ HÞ: ð7Þ
Proof.

• (5): let a; b; c; d be the true positive, true negative,

false negative and false positive probabilities, respec-

tively, then

PE ¼ ðcþ dÞ=ðaþ cþ dÞ;

DSC ¼ 2a=½ðaþ cÞ þ ðaþ dÞ�:
Simple algebra yields the equality. The inequality

follows immediately from the fact that 0 < 1

�DSC=26 1.

• (6): By definition and implying condition D > 0 for

all expectancies we have

DM ¼ EfD2g ¼ Ef½D� EfDg�2g þ EfDg2

¼ r2
D>0 þ l2

D>0;

which is the equality.

For the inequality consider Y ¼ D2 and f ðY Þ ¼
1=ð1þ Y Þ. f 00 P 0 and therefore f is convex (on Rþ).
But FOM is Eff ðY Þg. By convexity Eff ðY ÞgP
f ðEfY gÞ. Since f�1ðxÞ ¼ 1=x� 1 is decreasing f�1

ðFOMÞ6EfY g ¼ ðl2D>0 þ r2D>0Þ.
• (7): let DS ¼ fdðx;GÞ; x 2 Sg and DG ¼ fdðx; SÞ;

x 2 Sg be the distance of all points of one set to the

other set. Consider that DS and DG are ordered such

that value at rank 0 is the minimum. Then the partial
Haussdorff distance H1�f is the max of the values at
index ðfVSÞ and ðfVGÞ in DS and DG. Consider DS[G
to be the values of DS and DG where the points corre-

sponding to S \ G (those values are all 0 by construc-

tion) are counted only once. We also consider that

DS[G is sorted. Then the proposed metric D1�f is
the element at index ðfVS[GÞ. We know that

fVS[G P
f
2
ðVS þ VGÞ:

This means that the value at index ðfVS[GÞ of DS[G has

to be smaller or equal to the largest of the value at

index f
2
VS

� �
of DS and the value at index f

2
VG

� �
of DG.

The equality occurs only when these two values are

equal. This proves the right-hand side of (7). For the

left side, use

fVS[G ¼ f
1� PE

VS\G 6
f

1� PE
minfVS ; VGg:
5. Validation results

We evaluated the validation algorithm proposed in

Section 2 using the validation framework proposed in
Section 4 on 2 simulated and 10 real MRI brain data-

sets. It is fundamental to understand that the proposed

algorithm is very general. In particular it is not designed

or tuned for any particular structure. Other approaches

have been proposed that necessitate (and take advantage

of) prior information. For example in (Tsai et al., 2003)

a model of brain structures (i.e., an atlas) is deformed to

match the dataset; in (McInerney and Terzopoulos,
1996; Zeng et al., 1999), the white and gray matter of the

brain are segmented using special geometric constraints

based on the neuroanatomical knowledge that the

thickness of the cortical mantle is nearly constant; in

(Shattuck and Leahy, 2002) the datasets are pre-pro-

cessed to compensate for bias fields in the MR images

and non-brain tissue is removed. Our framework is more

general and does not require external information or
make extra assumptions on the anatomical region to be

segmented or the imaging modality. Because imple-

mentations of previously proposed segmentation tech-

niques are typically not publicly available and these

algorithms were typically not validated on publicly

available datasets it is difficult to quantitatively compare

performances. In contrast an implementation of our

technique is freely available (as part of the open-source
software 3D Slicer). The technique has been validated

on publicly available simulated and real datasets.

The work of Shattuck and Leahy (2002) is a notable

exception since it has been validated on publicly avail-

able images. We will show in Section 5.1 that even

though it is very general and assumption free, the per-

formance of the proposed technique is comparable to

this more specialized approach.
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5.1. Simulated datasets (N¼ 2)

The Brain Web datasets have been generated from a

known ground truth using a physical modeling of the

MRI process (Kwan et al., 1999). We can assess in a
perfectly objective way the performance of our method

by comparing the result of our segmentation with the

underlying ground truth. Note that even though these

datasets are computer-generated they are very realistic

(see Fig. 2(b)) Another interesting aspect of this project

is that from the same ground truth, datasets with dif-

ferent levels of noise can be simulated which allows us to

study the robustness of our method with respect to
noise. Using the proposed framework, the authors seg-
Fig. 2. Results on real and noisy simulated datasets (left and right

respectively): (a) sagittal slice of real dataset and proposed segmenta-

tion (WM+GM); (b) axial slice of artificial dataset and proposed

segmentation (ventricle); (c) expert segmentation (gray) and pro-

posed segmentation (white); (d) underlying ground truth (gray) and

proposed segmentation (white); (e) rendered surface of proposed seg-

mentation (WM+GM); (f) rendered surface of proposed segmentation

(ventricle).
mented the lateral ventricle, white matter (WM) and

white matter and gray matter (WM+GM) on 2 datasets:

• Normal brain, T1, 1� 1� 1 mm (181� 181� 217

voxels), 3% noise, 20% intensity non-uniformity

(‘‘RF’’) (standard parameters of theBrainWebmodel).
• Normal brain, T1, 1� 1� 1 mm (181� 181� 217

voxels), 9%, 40% (highest levels of noise available).

The results (Table 1) show that the proposed algo-

rithm gives very good results on these structures (ac-

cording to Zijdenbos et al. (1994), DSC > 0:7 is regarded
as good agreement in the literature). The complex

structure of the white matter makes its segmentation

more challenging and explains the somewhat mediocre
performance (in the case of the maximum noise dataset,

the cerebellum was not perfectly segmented).

In the highest level of noise, connectivity between the

lateral and the third ventricles was lost (the intraventric-

ular foramen of Monro disappeared in the noise). This

increased the strength of the ventricle edges in the noisy

dataset and, paradoxically, simplified the segmentation.

Overall the algorithm appears extremely robust to noise.
On the same datasets, Shattuck and Leahy (2002)

report 4 DSC ¼ 93% (standard noise) and DSC ¼ 81%

(maximum noise) for the white matter. These scores are

slightly better than our own results (DSC ¼ 91:9% and

DSC ¼ 80:3%, respectively). However, it is very im-

portant to keep in mind that there is a trade-off between

performance on a specific problem and versatility. Our

technique was not created specifically for white matter
extraction and, unlike more specialized techniques, it

can be used for a very wide variety of structures and

modalities. In summary, the wide applicability of the

proposed technique comes at a minor performance cost

vis-�a-vis the work of Shattuck and Leahy (2002).

5.2. Real datasets (N ¼ 10)

In this section we use, as the ground truth, the expert

manual segmentations of 10 full brains and brain tu-

mors from the Brain Tumor Database (Kaus et al.,

2001). The semi-automatic segmentation was performed

by a student with no special medical training and no

inside knowledge of the proposed algorithm.

The 10 patients’ heads were imaged in the sagittal and

axial plane with a 1.5 T MRI system 5 with a postcon-
trast 3D sagittal spoiled gradient recalled (SPGR) ac-

quisition with contiguous slices. The resolution is

0:975� 0:975� 1:5 mm (256� 256� 124 voxels). Da-

tasets where manually segmented into three regions:

• tumor

• white and gray matter

• other
4 Scores are the better of ML and MAP approaches, with no bias

fields compensation.
5 Signa, GE Medical Systems, Milwaukee, WI.



Table 1

Performance measure on artificial dataset

DSC (%) PE (%) lD>0 rD>0 D0:95 D0:99

Ventricle 92.0 95.1 14.9 9.4 1.07 1.13 0.48 0.61 1.00 1.00 1.00 1.41

WM 91.9 80.3 15.0 32.0 1.59 2.03 1.58 1.94 1.00 2.83 3.61 8.25

WM+GM 96.2 95.2 7.4 9.2 1.42 1.40 1.25 1.15 1.00 1.00 1.41 2.00

Left bold, with standard noise, right, with maximum noise.

Table 2

Performance measure for white and gray matter segmentation on real datasets

DSC(%) PE(%) lD>0 rD>0 D0:95 D0:99

Mean 88.9 19.8 1.79 1.47 2.03 4.91

Std. Dev. 4.0 6.3 0.58 0.79 1.52 2.82

Case 1 89.5 19.0 1.45 0.87 1.41 3.00

Case 2 90.6 17.1 2.29 2.44 2.00 8.25

Case 3 90.9 16.6 1.39 0.80 1.41 2.83

Case 4 84.7 26.5 1.28 0.79 1.41 3.00

Case 5 93.3 12.5 1.58 1.48 1.00 3.00

Case 6 87.0 23.0 1.87 1.66 2.24 5.66

Case 7 86.5 23.8 1.89 1.68 2.24 6.08

Case 8 81.3 31.6 3.15 3.00 6.16 10.67

Case 9 91.4 15.9 1.83 0.48 1.00 1.73

Case 10 93.8 11.8 1.19 0.48 1.00 1.73

Table 3

Performance measure for tumor segmentation on real datasets

Tumor Type DSC (%) PE(%) lD>0 rD>0 D0:95 D0:99

Mean – 83.1 27.6 1.54 0.88 2.35 3.65

Std. Dev. – 10.9 15.8 0.53 0.72 1.73 2.70

Case 1 meningioma 94.6 10.2 1.07 0.27 1.00 1.41

Case 2 meningioma 87.2 22.8 1.43 0.79 1.73 3.16

Case 3 meningioma 97.5 4.9 1.03 0.15 0.00 1.00

Case 4 low grade glioma 84.0 27.6 1.51 0.90 2.24 2.24

Case 5 astrocytoma 65.7 51.1 1.36 0.56 2.24 3.16

Case 6 low grade glioma 92.1 14.7 1.07 0.24 1.00 1.41

Case 7 astrocytoma 88.9 20.0 1.16 0.35 1.41 2.00

Case 8 astrocytoma 70.6 45.4 2.03 1.49 4.12 6.40

Case 9 astrocytoma 72.7 42.8 2.09 1.80 4.36 7.48

Case 10 low grade glioma 77.7 36.4 2.61 2.20 5.39 8.25
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Because of inter- and intra-expert variability we

should expect these results not to be as good as in the

synthetic case. It should also be noted that the arbi-

trary conventions of the manual segmentations are

responsible for a lot of the observed error since for

example the ventricle was labeled as gray matter, the

medulla oblongata and the spinal cord have been left

out etc. (compare Figs. 2(a) and (c)). Overall, none-
theless, results are consistent with the artificial case

(Tables 2 and 3).
6. Conclusion

We presented a new surface evolution flow based on

learned non-parametric statistics of the image. Imple-

mentation is straightforward and efficient using the Fast

Marching algorithm and is freely available as part of the
3D Slicer project. An extensive validation study as well

as a new unified set of validation metrics have also been

proposed.

Future work will include a detailed analysis of the

variational and statistical aspects of the algorithm. An

expansion of the validation framework is also underway.
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Appendix A. A fundamental flow

In what follows we only consider the 3D case. The

region R is an open connected bounded subset of R3

with smooth boundary S ¼ oR and N denotes the cor-

responding inward unit normal vector to S.
Given an image I , a non-negative weighting function

wð�; �Þ and a region R we define the energy

EðI ;w;RÞ :¼
Z
R
wðIðxÞ; krIðxÞkÞdx: ðA:1Þ

where E is the weighted volume of the region R. The
weight of a voxel x is determined by the function wð�; �Þ
of the local properties IðxÞ and krIðxÞk of the image.

Ideally, w should reflect the local properties of the region

we want to segment. As this is not known a priori we

heuristically estimate w as we evolve R to maximize E.

Proposition 1. Notation as above. Then for a given
weighting function w, the evolution in which the energy
EðI ;w;RÞ is decreasing as fast as possible (using only local
information) is oS

ot

� �
¼ wN.

Proof. Let wt : R ! Rn be a family of embeddings, such

that w0 is the identity. Let w : Rn ! R be a positive C1

function. We set RðtÞ :¼ wtðRÞ and SðtÞ :¼ wtðoRÞ. We
consider the family of w-weighted volumes

HðtÞ :¼
Z
R
wðwtðxÞÞdwtðxÞ ¼

Z
RðtÞ

wðyÞdy:

Set X ¼ owt

ot jt¼0 then using the area formula (Simon,
1983) and then by the divergence theorem, the first

variation is

dH
dt

jt¼0 ¼
Z
R
divðwX Þdx ¼ �

Z
oR
ðwX Þ �Ndy; ðA:2Þ

where N is the inward unit normal to oR. Consequently
the corresponding w-weighted volume minimizing flow

is

oS
ot

¼ wN:

A different derivation of the same result has previously

been proposed by Siddiqi et al. (1998).

Since w is a non-negative function, the flow is re-

versible. In particular, the flow in the reverse direction,

oS
ot

¼ �wN; ðA:3Þ

gives the direction in which the energy is increasing as

fast as possible (using local information). In the context

of segmentation, one may think of (A.3) as a bubble and
of the original flow as a snake.
Given an approximation R0 of the region to be seg-

mented we can use a maximum likelihood-like approach

to determine the weighting function w0 which would a

posteriori justify the segmentation of R0.

Proposition 2. For a given fixed region R0, the energy
EðI ;w;R0Þ is maximized by setting w to pR0

the condi-
tional probability on that region

pR0
¼ argmaxw;kwk1¼1EðI ;w;R0Þ
¼ P ðIðxÞ; krIðxÞkjx 2 R0Þ: ðA:4Þ

Proof. We can rewrite the energy as

EðI ;w;R0Þ ¼
Z
I

Z
krIk

NR0
ðu; vÞ:wðu; vÞdudv;

where NR0
ðu; vÞ is the volume of the set of points x 2 R0

such that IðxÞ ¼ u and krIðxÞk ¼ v. But this is just a

constant multiple of pR0
¼ P ðIðxÞ; krIðxÞkjx 2 R0Þ

which is therefore by the Schwartz’s inequality is the

maximizer of E.
As the region evolves, w is periodically updated ac-

cording to (A.4). This changes the definition of the en-
ergy (A.1) and therefore (A.3) can only be considered a

gradient flow for every time interval when w is fixed.
Appendix B. Non-parametric estimation of image statis-

tics

Instead of using the distribution pR0
¼ P ðIðxÞ;

krIðxÞkjx 2 R0Þ as described in (A.4) we use

p ¼ pM � pH , where M and H are the median and inter-

quartile range (the difference of between the first and last

quartile) operators on a 3� 3� 3 neighborhood. M and

H convey about the same information as I (gray level)

and krIk (local homogeneity). For example if krIk is

large then values in a 3� 3� 3 neighborhood are very
dispersed and therefore the interquartile range is large.

These measures were chosen primarily because they are

robust to noise 6 and they respect edges 7 of the image

better than their linear counterparts.

We use Parzen windows (see for example Duda et al.,

2001) to estimate the probability density functions. This

is a non-parametric technique and therefore no as-

sumption is required on the shape of the distributions.
Given a window function / and N samples m1; . . . ;mN

and h1; . . . ; hN the densities are estimated by
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p̂MðmÞ ¼
1

N

XN
i¼1

/ðm� miÞ;

p̂HðhÞ ¼
1

N

XN
i¼1

/ðh� hiÞ:

This corresponds to convolving the samples histogram

with /. It can be shown that the estimates p̂M and p̂H
converge toward the true estimates pM and pH with
n ! 1 and / ! d. We used / ¼ gr a centered Gaussian

kernel of standard deviation r ¼ r̂H=10 to estimate pH
and r ¼ r̂M=10 to estimate pM .
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