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Abstract. In this paper we present a new algorithm for 3D medical im-
age segmentation. The algorithm is fast, relatively simple to implement,
and semi-automatic. It is based on minimizing a global energy defined
from a learned non-parametric estimation of the statistics of the region
to be segmented. Implementation details are discussed and source code
is freely available as part of the 3D Slicer project. In addition, a new
unified set of validation metrics is proposed. Results on artificial and
real MRI images show that the algorithm performs well on large brain
structures both in terms of accuracy and robustness to noise.

1 Introduction

The problem of segmentation, that is finding regions in an image that are ho-
mogeneous in a certain sense, is central to the field of computer vision. Medical
applications, visualization and quantification methods for computer-aided diag-
nosis or therapy planning from various modalities typically involve the segmen-
tation of anatomical structures as a preliminary step.
In this paper we will consider the problem of finding the boundaries of only one
anatomical region with limited user interaction. Interactivity is very desirable
since the user will be given the opportunity to make use of often implicit but
absolutely necessary external knowledge to guide the algorithm towards a result
that would make sense for her task. The segmentation process can be repeated
in order to identify as many different regions as necessary.
Many different approaches have been proposed to address the segmentation prob-
lem which can be dually considered as finding regions or finding boundaries.
Focusing only on the boundaries is less complex computationally but also less
robust since information inside the region is discarded. Typically this is the
approach of the snake and active contours variational methods [7, 16, 17].
While the original region-growing algorithm [11] formalism is extremely crude,
interesting extensions have been proposed in [9] where some statistical informa-
tion is derived from the region as it expands. These techniques have been applied
to medical image analysis [12, 14]. The relation between region-growing and ac-
tive contours has been studied in [15] and more recently active contours have
been extended to an elegant active regions formalism [8] where the boundaries
of regions are deformed according to an evolution equation derived to minimize
an energy based on some statistics of the regions.



2 Basic Flow

In this section, we state the fundamental flow underpinning the segmentation
method. Let Ω be an open connected bounded subset of R

n with smooth bound-
ary ∂Ω. Let ψt : Ω → R

n be a family of embeddings, such that ψ0 is the iden-
tity. Let φ : R

n → R be a positive C1 function. We set Ω(t) := ψt(Ω) and
S(t) := ψt(∂Ω). We consider the family of φ-weighted volumes

H(t) :=

∫

Ω

φ(ψt(x))dψt(x) =

∫

Ω(t)

φ(y)dy.

Set X = ∂ψt

∂t |t=0. then using the area formula [6] and then the divergence theo-

rem, the first variation is dH
dt |t=0 =

∫

Ω div(φX) dx. = −
∫

∂Ω(φX) ·N dy, where
N is the inward unit normal to ∂Ω. Consequently the corresponding φ-weighted
volume minimizing flow is

∂S

∂t
= φN .

A different derivation of the same result has previously been proposed in [4].

3 Method

In what follows we will only consider the 3D case. A region R will be a subset
of R

3 with smooth boundary S = ∂R. As above, N denotes the corresponding
inward unit normal vector to S.
Given an image I , a non-negative weighting function w(·, ·) and a region R we
define the energy:

E(I, w,R) :=

∫

R

w( I(x), ‖ ∇I(x) ‖ ) dx. (1)

E is the weighted volume of the region R. The weight of a voxel x is determined
by the function w(·, ·) of the local properties I(x) and ‖ ∇I(x) ‖ of the image.
Ideally, w should reflect the local properties of the region we want to segment.
As this is not known a priori we will heuristically estimate w as we evolve R to
maximize E.

Proposition 1. Notation as above. Then for a given weighting function w, the
evolution in which the energy E(I, w,R) is decreasing as fast as possible (using

only local information) is
∂S

∂t
= wN .

Proof. Follows immediately from the discussion in Section 2. ut
Since w is a non-negative function, the flow is reversible. In particular, the flow
in the reverse direction,

∂S

∂t
= −wN , (2)

gives the direction in which the energy is increasing as fast as possible (using
local information). In the context of segmentation, one may think of (2) as a
bubble and of the original flow as a snake.
Given an approximationR0 of the region to be segmented we can use a maximum
likelihood-like approach to determine the weighting function w0 which would a
posteriori justify the segmentation of R0.

Proposition 2. For a given fixed region R0, the energy E(I, w,R0) is maxi-
mized by setting w to p0 the conditional probability on that region:

w0 = arg max
p

E(I, w,R0) = Pr( I(x), ‖ ∇I(x) ‖ | x ∈ R0 ). (3)



Proof. We can rewrite the energy as:

E(I, p, R0) =

∫

I

∫

‖∇I‖

NR0
(u, v).w(u, v) dudv,

where NR0
(u, v) is the volume of the set of points x ∈ R0 such that I(x) = u and

‖ ∇I(x) ‖= v. But this is just a constant multiple of Pr( I(x), ‖ ∇I(x) ‖ | x ∈
R0 ) which by the Schwartz’s inequality is the maximizer of E. ut
As the region evolves, p will be periodically updated according to (3). This will
change the definition of the energy (1) and therefore (2) can only be considered
a gradient flow for every time interval when w is fixed.

4 Implementation

We implemented our method as a module of the open-source software 3D Slicer.
It is freely available for download at http://www.slicer.org.

4.1 Surface evolution

As the flow (2) is unidirectional (the surface can only expand since w ≥ 0) any
voxel x will eventually be reached at a time T (x). Knowing T is equivalent to
knowing R or S since by construction:

R(t) = { x, T (x) ≤ t } and S(t) = ∂R(t). (4)

Solving the flow (2) for S(t) is equivalent to solving the Eikonal equation (5) for
T (x):

‖ ∇T (x) ‖ ·w(x) = 1. (5)

This can be done very efficiently using the Fast Marching method [3]. Starting
from known seed points which define the initial surface, the algorithm marches
outwards by considering neighboring voxels and iteratively computing arrival
times T in increasing order. The seed points are set by the user inside the
structure to be segmented. By construction, when computing T (x), the surface
contains the voxel x as well as all voxels for which T has already been computed.
The algorithm will terminate when T is known for all points and using (4) we
will know S(t) for any t. We will then let the user determine what time t0 of the
evolution corresponds best to the region she wants.
Note that with a very different formalism, our method is, in its implementation,
very reminiscent of region growing. For example, the min-heap data structure
which makes Fast Marching efficient is the direct equivalent of the sequentially
sorted list in the seeded region growing algorithm [9]. In fact our algorithm could
be made a direct non-parametric extension of seeded region growing simply
by artificially forcing arrival times to zero for all points inside the surface S.
Relations between region growing and variational schemes have been previously
exposed in [15].

4.2 Estimation of probability density function

The probability has been modified to p = pM (m) · pH(h) where M and H are
the median and interquartile range (the difference of between the first and last
quartile) operators on a 3 × 3 × 3 neighborhood. M and H convey more or less
the same information as I (gray level) and ‖ ∇I ‖ (local homogeneity) but their
non-linear nature makes them more robust to noise and allow them to respect
better the edges of the image.
We use Parzen windows [10] to estimate the probability density functions. It is a
non-parametric technique and therefore no assumption is required on the shape



of the distributions. Given a window function φ and N samples m1, . . . ,mN and
h1, . . . , hN the densities are estimated by:

pM (m) =
1

N

N
∑

i=1

φ(m−mi) and pH(h) =
1

N

N
∑

i=1

φ(h− hi)

5 Validation

Objective and quantitative analysis of performance is absolutely crucial (but
often overlooked) when proposing a segmentation algorithm. Since designing a
segmentation method is challenging (lack of unifying formalism, high diversity
in the applications, subjectivity, implicitness, etc.) it does not come as a sur-
prise that the validation of such an algorithm will also be challenging. Different
methods have been studied (see [20] and references therein). We will propose
a unifying framework for discrepancy measures based on the number and the
position of mis-segmented voxels and show how it relates to classical measures.
We will then apply it to the validation of segmentation of realistic synthetic
images (for which the “ground truth” i.e. perfect segmentation is known) at dif-
ferent levels of noise for accuracy and robustness assessment as well as to manual
expert segmentation of real datasets.

5.1 Classical discrepancy measures

Different measures have been proposed to assess the resemblance between a pro-
posed segmentation S and the corresponding ground truth G. The Dice Similar-
ity Coefficient has been widely used and it can be derived as an approximation
of the kappa statistic (see [1]). It is defined as:

DSC(S,G) :=
V (S ∩G)

1
2 (V (S) + V (G))

Where V (·) is the volume (number of voxels) of a set.
One disadvantage of this coefficient is that it only takes into account the number
of mis-segmented pixels and disregards their position and therefore the severities
of errors. This was corrected in Yasnoff’s normalized discrepancy measure (ND,
see [18]) and the Factor of Merit (FOM, see [5]):

ND :=
1

N

N
∑

i=1

d(i)2 and FOMe :=
1

N

N
∑

i=1

1

1 + d(i)2

Where N is the number of mis-segmented voxels and d(i) is the error on the ith

voxel. Another popular measure is the Hausdorff distance:

H(S,G) := max{ max
s∈S

min
g∈G

‖ s− g ‖, max
g∈G

min
s∈S

‖ s− g ‖ }

H(S,G) is the maximum distance we would have to move the boundaries of one
set so that it would encompass completely the other set. As this is extremely
sensitive to extreme errors, the partial Hausdorff distance Hf (S,G) can be intro-
duced (see [2]) as the maximum distance we would have to move the boundaries
of one set so that it would cover f% of the other set.



5.2 Proposed framework

Consider now the error-distance:

d(x) :=















0 for x correctly segmented (x ∈ S ∩G)

min
s∈S

‖ x− s ‖ for x under-segmented (x ∈ G\S)

min
g∈G

‖ x− g ‖ for x over-segmented (x ∈ S\G)

Assuming that all points x ∈ S ∪G are equally likely d can be seen as a random
variable D which describes completely the discrepancy between S and G. We
can study D using the standard statistical tools:

probability of error: PE := Pr(D > 0)

mean error: µD>0 := mean(D | D > 0)

standard deviation of error: σD>0 := stdev(D | D > 0)

partial distance-error: Df := f − quantile(D)
These measures receive a natural intuitive interpretation.

– PE is the probability for a voxel x ∈ S ∩G to be misclassified (either over-
or under-segmented).

– An erroneous voxel is on average µD>0 pixels off. This value is or is not
typical depending on the standard deviation σD>0.

– D1−f is the error distance of the worst f% voxels or equivalently the max-
imum distance we would need to move erroneous voxels for the error to be
improved to PE = f .

As an example, PE = 10%, µD>0 = 3.1, σD>0 = 0.3 and D0.99 = 14 would
mean that the overlap between the ground truth and the proposed segmentation
is 90%. The 10% remaning pixels are either under-segmented or over-segmented
pixels (“false positive” i.e. pixels that are in S and not in G). On average these
pixels are 3.1 pixels off. This value is very typical since the standard variation is
low (0.3). However there is no reason for the error to be Gaussian and, here, the
tail probability is not negligible since the worst 1% pixels are at least 14 pixels
off. This could be due to a thin, long finger of mis-segmented pixels.

The following proposition justifies the definition of these new unified measures.

Proposition 3. These measures are related to the measures presented in Section
5.1 according to:

1 − DSC ≤PE = (1 − DSC)/(1 −
DSC

2
) (6)

1

FOMe
− 1 ≤(µ2

D>0 + σ2
D>0) = ND (7)

H1−f/(1−PE) ≤D1−f ≤ H1− f
2

(8)

(in particular, D1 = H)Proof. in future publication ut

5.3 Results on simulated datasets

The publicly available Brain Web [19] datasets have been generated from a
known ground truth using a sophisticated physical modeling [13] of the MRI pro-
cess. We can assess in a perfectly objective way the performance of our method
by comparing the result of our segmentation with the underlying ground truth.
Note that even though these datasets are computer-generated they are very re-
alistic (see figure 1(b)) Another interesting aspect of this project is that from



the same ground truth, datasets with different levels of noise can be simulated
which allows us to study the robustness of our method with respect to noise. We
segmented the lateral ventricle, white matter (WM) and white matter and gray
matter (WM+GM) on 2 datasets:

– Normal brain, T1, 1 × 1 × 1 mm (181 × 181 × 217 voxels), 3% noise, 20%
intensity non-uniformity (”RF”) (standard parameters of the Brain Web
model).

– Normal brain, T1, 1× 1× 1 mm (181× 181× 217 voxels), 9%, 40% (highest
levels of noise available).

Our results (Table 1) show that the proposed algorithm gives very good results
on these structures (DSC > 0.7 has been described as a good agreement in
the literature, see for example [1]). The complex structure of the white matter
makes it more challenging and explains the somewhat mediocre performance
(in the case of the maximum noise dataset, the cerebellum was not perfectly
segmented). In the highest level of noise, connectivity between the lateral and
the third ventricles was lost (the intraventricular foramen of Monro disappeared
in the noise). This increased the strength of the ventricle edges in the noisy
dataset and, paradoxically, simplified the segmentation. Overall the algorithm
appears extremely robust to noise.

DSC PE µD>0 σD>0 D0.95 D0.99

Ventricle 92.0% 95.1% 14.9% 9.4% 1.07 1.13 0.48 0.61 1.00 1.00 1.00 1.41

WM 91.9% 80.3% 15.0% 32.0% 1.59 2.03 1.58 1.94 1.00 2.83 3.61 8.25

WM+GM 96.2% 95.2% 7.4% 9.2% 1.42 1.40 1.25 1.15 1.00 1.00 1.41 2.00

Table 1. Performance measure on artificial dataset. Left bold, with standard noise,
right, with maximum noise. Underlined results are illustrated by figures 1(b),1(d),1(f).

5.4 Results on real datasets

In this real case, the pathological diagnoses are meningiomas (brain tumor).
Patients’ heads were imaged in the sagittal and axial plane with a 1.5 T MRI
system3 with a postcontrast 3D sagittal spoiled gradient recalled (SPGR) acqui-
sition with contiguous slices. The resolution is 0.975 × 0.975 × 1.5 mm (256 ×
256× 124 voxels). These datasets were manually segmented by one expert.
Because of inter- and intra-expert variability we should expect these results not
to be as good as in the synthetic case. It should also be noted that the arbitrary
conventions of the manual segmentations are responsible for a lot of the observed
error since for example the ventricle was labeled as gray matter, the medulla
oblongata and the spinal cord have been left out etc. (compare Fig. 1(a) and
1(c)). Overall, nonetheless, results are consistent with the artificial case.

DSC PE µD>0 σD>0 D0.95 D0.99

Tumor 78.0% 88.0% 36.0% 21.4% 1.97 1.34 1.63 0.94 3.32 1.41 7.00 2.83

WM+GM 96.1% 92.4% 7.5% 14.2% 1.69 1.28 1.99 0.75 1.00 1.00 2.00 2.24

Table 2. Performance measure on 2 real datasets. Underlined results are illustrated
by figures 1(a),1(c),1(e).

3 Signa, GE Medical Systems, Milwaukee, WI.



(a) Sagittal slice of real
dataset and proposed
white and gray matter
segmentation (white)

(b) Axial slice of noisy ar-
tificial dataset and pro-
posed ventricle segmenta-
tion (white)

(c) Expert segmentation
(gray) and proposed white
and gray matter segmen-
tation (white)

(d) Underlying ground
truth (gray) and pro-
posed ventricle segmenta-
tion (white)

(e) Rendered surface of
proposed white and gray
matter segmentation

(f) Rendered surface of
proposed ventricle seg-
mentation



6 Conclusion

We presented a new curve evolution flow based on learned non-parametric statis-
tics of the image. Implementation is straightforward and efficient using the Fast
Marching algorithm and is freely available as part of the 3D Slicer project. An
extensive validation study as well as a new unified set of validation metrics have
also been proposed.
Future work will focus on extending our formalism into a purely variational
framework, adding some regularizing constraints and extending the validation
study.
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